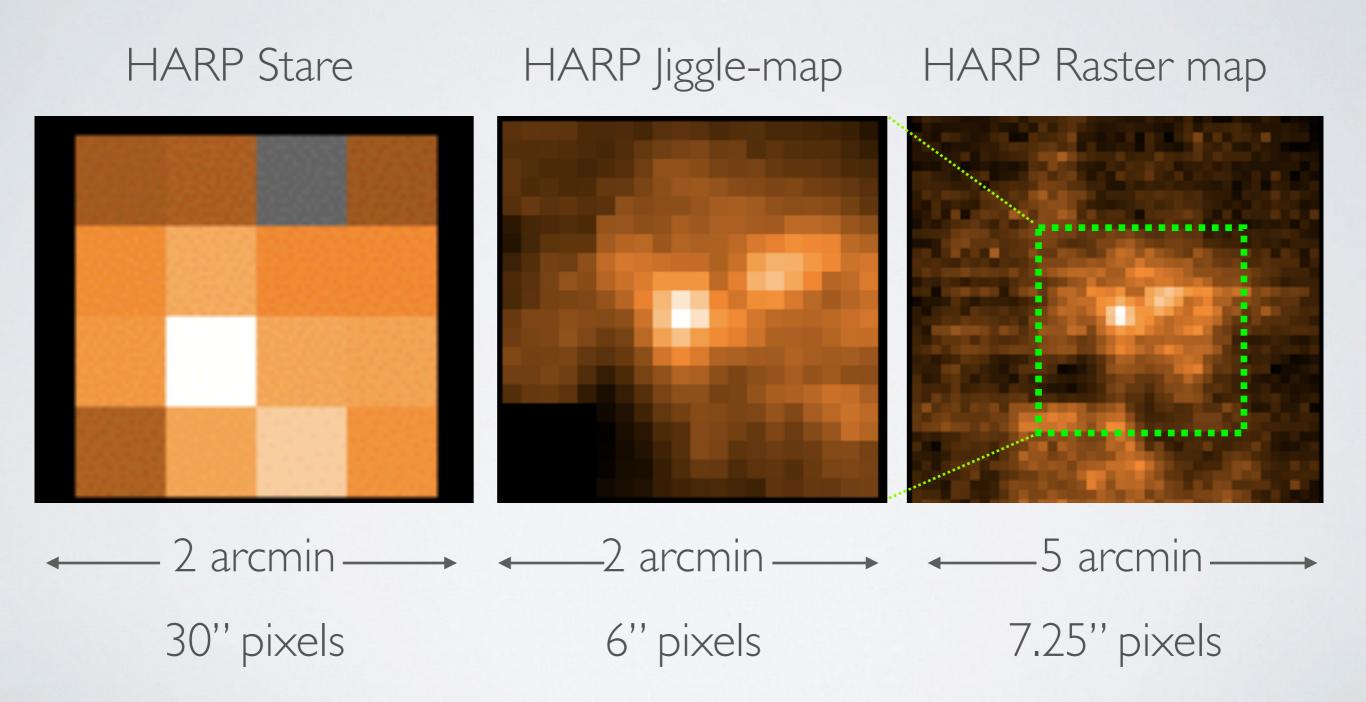
HETERODYNE DATA REDUCTION J Dempsey

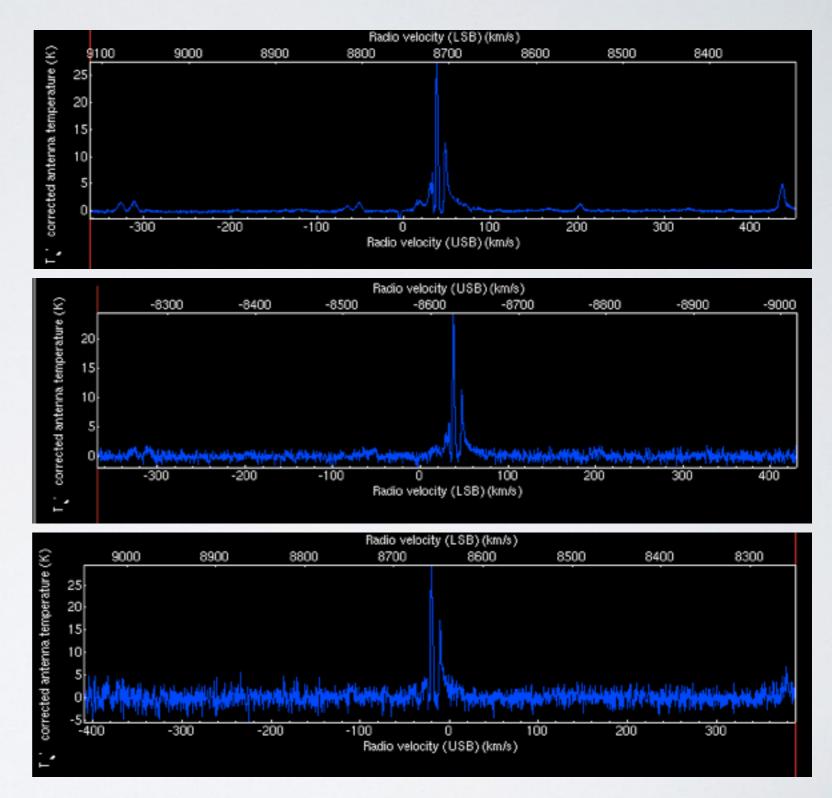

JCMT HETERODYNE SUITE

- Single-pixel receivers at 230 and 690 GHz
- 16-pixel 345GHz array receiver HARP
- ACSIS multi-channel digital spectrometer

HETERODYNE OBS MODES

- Observing patterns:
 - Stare: Single array position integration- single pixel output (16 positions for HARP)
 - Jiggle-map: moves secondary to fill in the 30'' spacing between HARP receptors to make a 2' x 2' map. Two main spacings (HARP4 - 4 x 4 jiggle, undersampled, 7.25'' pix, and HARP5 - 5 x 5 jiggle, oversampled, 6'' pix)
 - Raster: scan or 'on-the-fly' technique, with HARP array rotated at 14.04 deg to scan direction, resulting in 7.3'' pixels - often repeated with 90 deg rotation to create 'basket- weave' maps
- Spectrometer options 250MHz 1860 MHz bandwith, 1 or 2 sub-bands (eg for 13CO, C18O simultaneous observing), resolution from 0.0305 MHz - 0.977 MHz

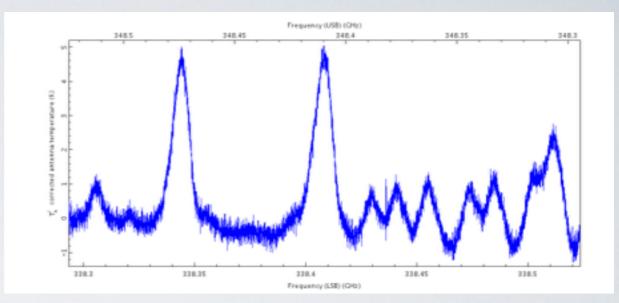
Example: G34.3 integrated intensity images

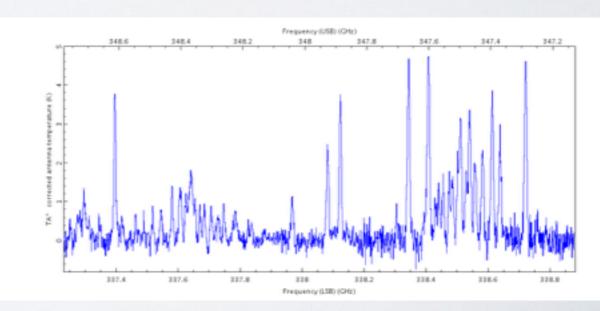


Example: G34.3 peak spectrum

Stare: 0.14 K rms

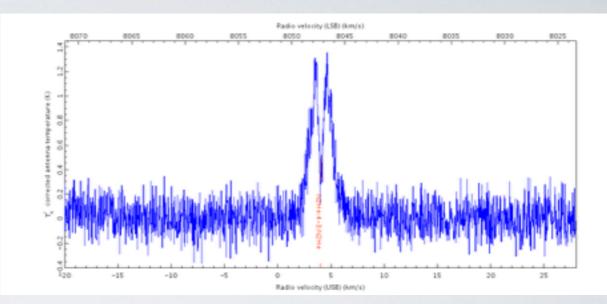
Jiggle: 0.5 K rms

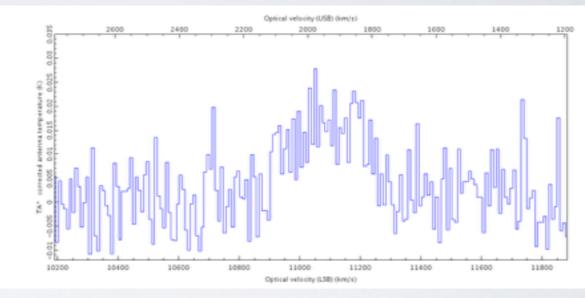

Raster: 1.6 K rms


IGHz bandwidth, 0.488MHz spectal resolution

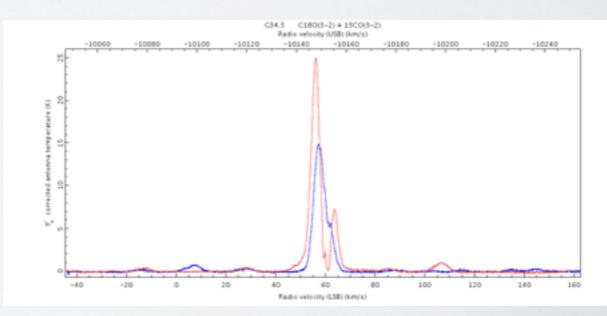
BANDWIDTHS

 G34.3 CH3OH lineforest observed at 338
GHz with bandwidths
250 MHz (top) I GHz
(centre) and I.6 GHz
(bottom)





OTHER MODES

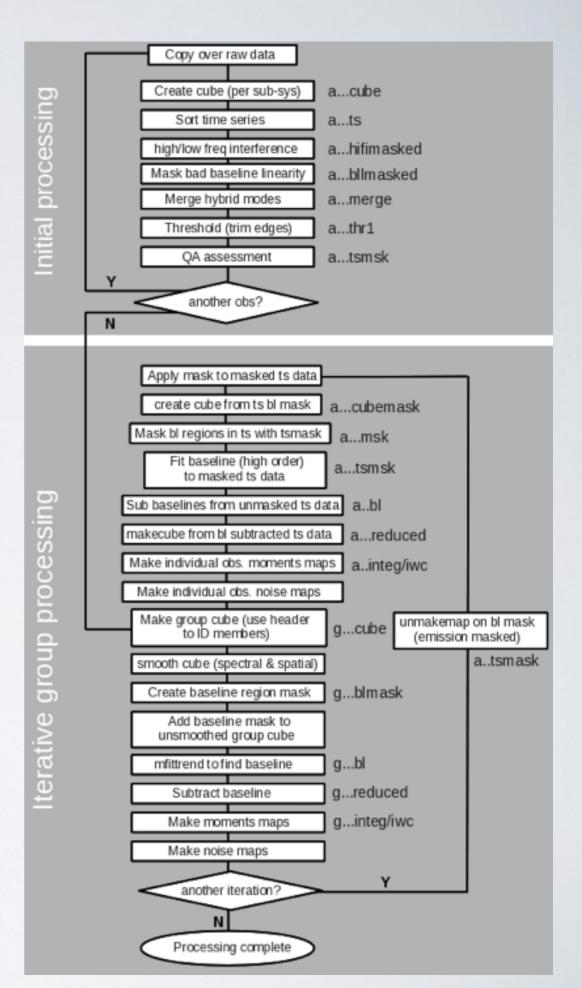

 N2H+ at 372GHz - requires best weather but is attainable

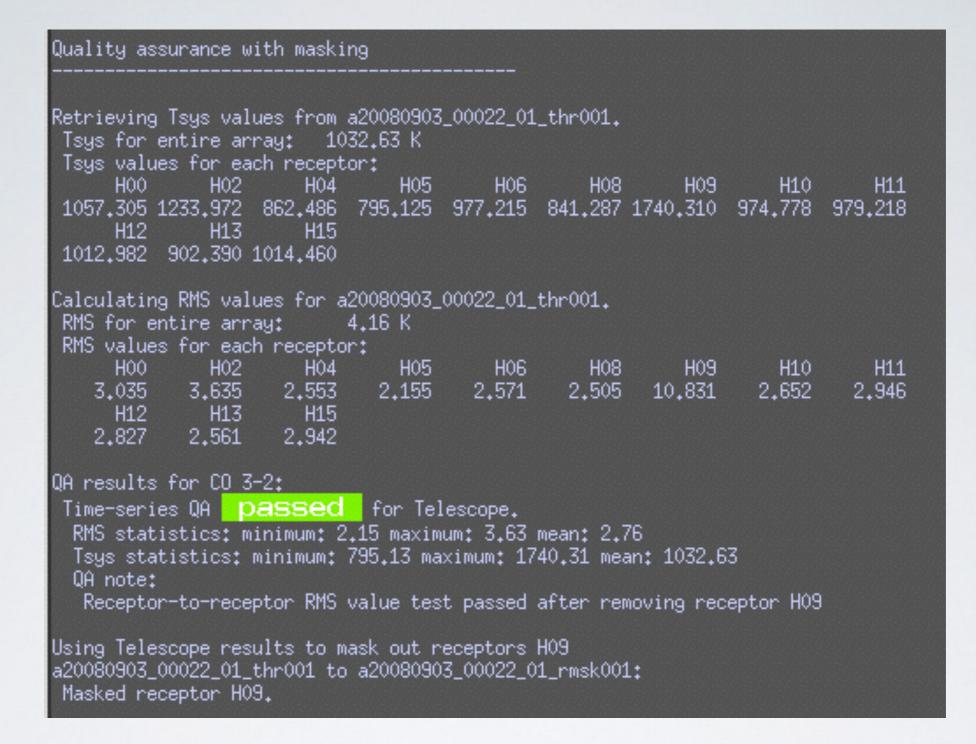
 Wide-band observations of galaxies

 Simultaneous observation of I3CO(3-2)/CI8O

DATA ACQUISITION

- Summit QA pipeline produces information on the receiver performance and baseline quality
- Summit pipeline reduces the data without complex techniques for baseline correction etc
- Produces output to the JCMT Tonight page and OMP page
- More sophisticated reduction is completed in Hilo, with any userspecified recipe parameters, and is made available to the P.I. at CADC JCMT Science Archive


JCMT SCIENCE RECIPES


- A number of default recipes are found in the JCMTOT during program construction and this selection is used for the reduced files that project then downloads from the archive
- Tailored recipes can also be applied, at request, and are encouraged

	RECIPE	DESCRIPTION	BASELINE DETERMINATION
	NARRLOWLINE	One of more narrow lines are expected across the band. Select this recipe if	Smoothing: spatial = 5×5 pixels
		the expected lines are less than about 20	frequency $= 10$ channels
		channels wide.	
	BROADLINE	The line is so wide that it extends over a	Uses the outer 10% of the spectra
		large fraction of the band. Since it also	to fit a single order polynomial.
		typically is too weak to clearly see in a	
		single observation, a pre-determined and	
		fixed baseline window and linear baselines	
		need to be used. The central regions of	
		active galaxies fall in this category, as	
		well as certain outflow sources.	
	GRADIENT	Typically one moderately wide line is	Smoothing:
		expected, for which the center velocity	spatial = 3×3 pixels
		varies significantly across the field. The	frequency $= 25$ channels
		baseline window changes across the field.	
•		Nearby galaxies often fall in this category.	
		The expected lines should be wider than	
		20 channels and probably not wider than	
		20% of the available bandwidth	
	LINEFOREST	A forest of strong and weak lines is ex-	Smoothing:
		pected across the observed band. Bright,	spatial = 5×5 pixels
		nearby star formation sources may fall in	frequency $= 10$ channels
		this category. This recipe also creates a	
		separate moments map for each line (as	
		defined by the parameter PER_LINE).	

THE PIPELINE

- > oracdr_acsis -cwd
- >oracdr -loop file -files <in.txt>
- Range of recipe parameters that can be adjusted including baseline trimming, QA parameters, rebinding factors, and more
- See Heterodyne observing manual for details

 Calculates Tsys and RMS for all receptors - and compares to any quality assurance parameters set by the pipeline Baselines, finds emission regions using Clumpfind, and creates moments maps, velocity maps and integrated intensity images Creating baseline region mask. Smoothing cube ga20080903_22_1_reduced001 with [3,3,25] tophat. ga20080903_22_1_blmask001: baseline region mask created.

Creating moments maps for ga20080903_22_1_reduced001. Smoothing cube with [3,3,25] tophat. Masking out lines using ga20080903_22_1_blmask001. Median RMS in smoothed observation is 0.143.

Clump finding in ga20080903_22_1_reduced001 Finding clumps higher than 3.0-sigma using clumpfind. Masking non-clump data. Collapsing to form temporary integ map. Finding clumps higher than 4.0-sigma using clumpfind. Masking non-clump data. Collapsing to form temporary iwc map.

Created integ map in ga20080903_22_1_integ. ga20080903_22_1_integ to ga20080903_22_1_rimg: Tagged as representative.

Creating new object for KAPVIEW

ga20080903_22_1_rimg to ga20080903_22_1_rimg_64.png: Created graphic. Adding EXIF header to ga20080903_22_1_rimg_64.png. ga20080903_22_1_rimg to ga20080903_22_1_rimg_256.png: Created graphic. ga20080903_22_1_rimg to ga20080903_22_1_rimg_1024.png: Created graphic. Spectrum created from pixel co-ordinates (5,2) created in ga20080903_22_1_sp001. ga20080903_22_1_sp001 to ga20080903_22_1_rsp: Tagged as representative.

ga20080903_22_1_rsp to ga20080903_22_1_rsp_64.png: Created graphic. Adding EXIF header to ga20080903_22_1_rsp_64.png. ga20080903_22_1_rsp to ga20080903_22_1_rsp_256.png: Created graphic. ga20080903_22_1_rsp to ga20080903_22_1_rsp_1024.png: Created graphic.

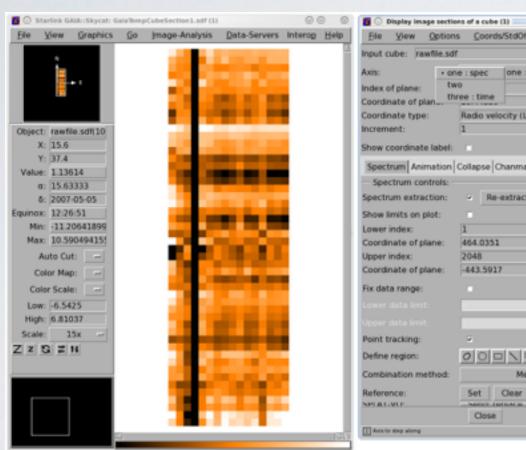
Created iwc map in ga20080903_22_1_iwc.

Create noise maps

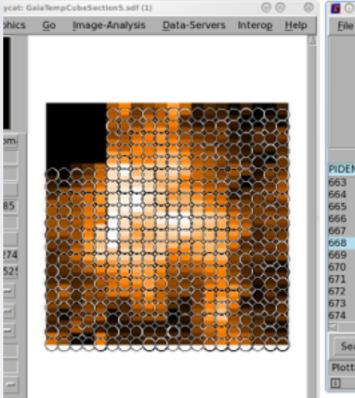
Creating noise map for ga20080903_22_1_reduced001. Using variance array in ga20080903_22_1_reduced001 to create temporary noise map. Created noise map in ga20080903_22_1_noise. Checking RMS spatial uniformity for ga20080903_22_1_noise. Using central 50% of map. minimum: 1.21 maximum: 2.56 mean: 1.65 Number of pixels used: 420 Number of bad pixels: Û Percentage bad: 0.00% Spatial RMS uniformity **Dassed** for Telescope for ga20080903_22_1_noise. QA based on bad pixels in final map **DASSEC** for Telescope for ga20080903_22_1_noise. Checking RMS uniformity for ga20080903_22_1_reduced001. Masking out lines using ga20080903_22_1_blmask001. RMS map from lower 10% of frequency range created in ga20080903_22_1_rmslo.

RMS map from upper 10% of frequency range created in ga20080903_22_1_rmshi.

Median RMS in lower 10%: 1.9199K Median RMS in upper 10%: 1.4993K


Percentage difference: 28.06%

Frequency RMS uniformity **passed** for Telescope for current map.


Produces noise map and applies any QA rms tests

INVESTIGATING THE DATA


- Perusing raw file with gaia
- Running a basic makecube
- An output cube
- Inspecting baselines and flagging bad receptors and regions
- Creating an integrated intensity image

Eile	Edit	Opti	ons	Data-	Sei	rvers				
	Search Options									
	Object Name:					Eq			uinox: j	
	a:			19:10:13.410			d:			
Min Radius: Max Objects:						Max Radius:				
							ea			
	Search Results (750)									
PIDENT RA D			ec	LAB	BEL					
663	19:10:1	7.051	+09:0	06:23.4	13	H02				
664	19:10:1	5.029	+09:0	06:53.4	11	H04				
665	19:10:1	5.029	+09:0	06:23.4	11	H05				
666	19:10:1	5.029	+09:0	15:53.4	11	H05				
667	19:10:1	5.029	+09:0	15:23.4	11	H07				
668	19:10:1	3.008	+09:0	05:23.3	38	H08				
669	19:10:1	3.000	+09:0)5:53.3	39	H09				
670	19:10:1	3.000	+09:0	6:23.3	89	H10				
671	19:10:1	3.000	+09:0	06:53.3	88	H11				
672	19:10:1	0.972	+09:0	6:53.3	6	H12				
673	19:10:1	0.979	+09:0	6:23.3	6	H13				
674	19:10:1	0.979	+09:0)5:53.3	6	H14				
	arch	Plot	Filt	er			fo			
Plott	ing objec	:ts						F	-	

GAIA ADVANCED

- Contouring
- Displaying observation regions/receptors
- Displaying clumps and catalogues
- Channel maps
- Animations
- 3D rendering and visualization