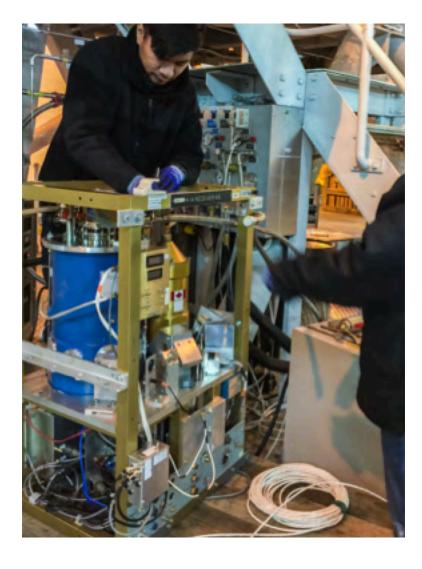
JCMT Receiver-A Upgrade

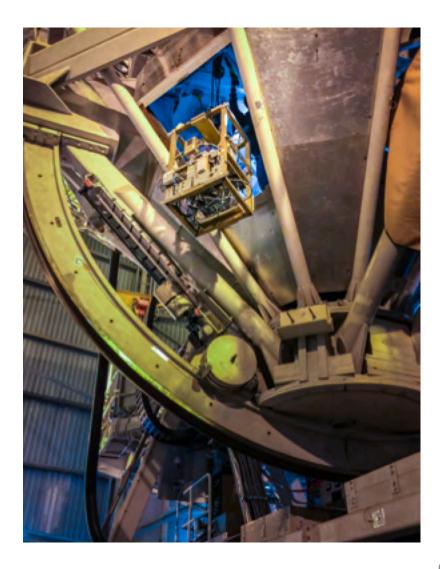
Ming-Tang Chen, ASIAA

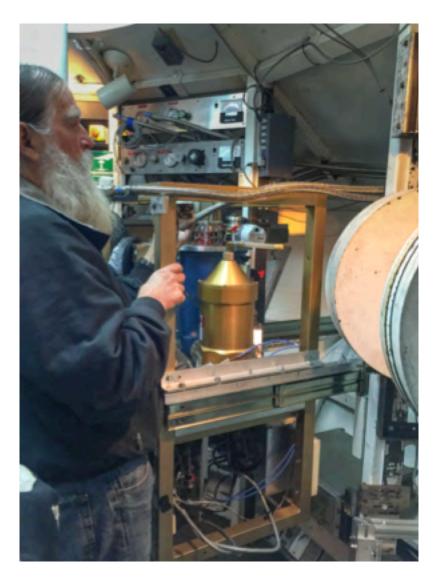
Background

- Lowest frequency band to utilize telescope time in bad weather
- Wet dewar receiver, require LHe and manpower. Need renovation
- Single pixel, with relatively small bandwidth (almost 2 GHz)
- HIA receiver, 20+ year old
 - Tuning ranger 211-272 GHz (gap around 252 GHz)
 - Trx 50-150 K
 - Auto tuning Double sideband (1 IF) no SSB
- ASIAA/SMA front-end
 - 185 250 GHz, work up to 270 GHz with degraded performances
 - Single pixel, DSB
 - Frontend can output 8 GHz IF, but limited by IF and backend
 - Possible upgrade to SMA 240 GHz mixer to cover 272 GHz

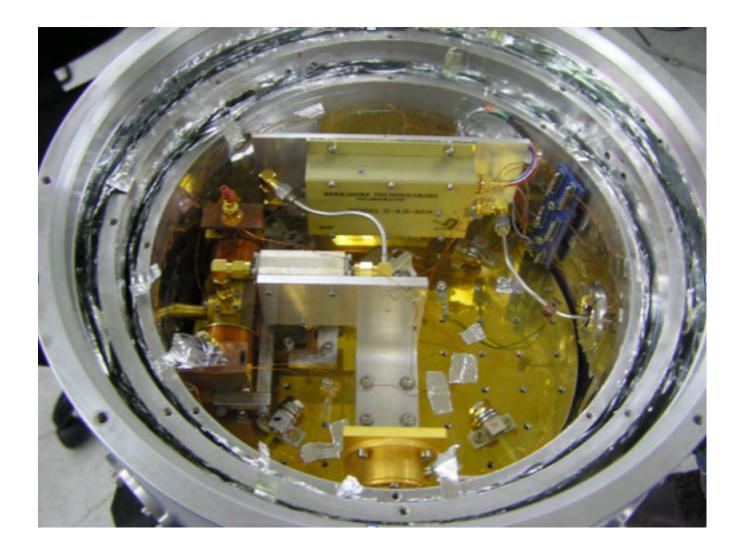
Objective


Within limited time frame (2 years?) and within collaborations among EAO regions


- Upgrade Rx-A with up-to-date technology
- With closed-cycle dewar
- Wider bandwidth 12 GHz
- Dual linear polarizations
- Sideband separation mixer
- More than one pixel
- More than one frequency channels


Logistics

- Where is Rx-A
- How to install Rx-A
- What does Rx-A look like

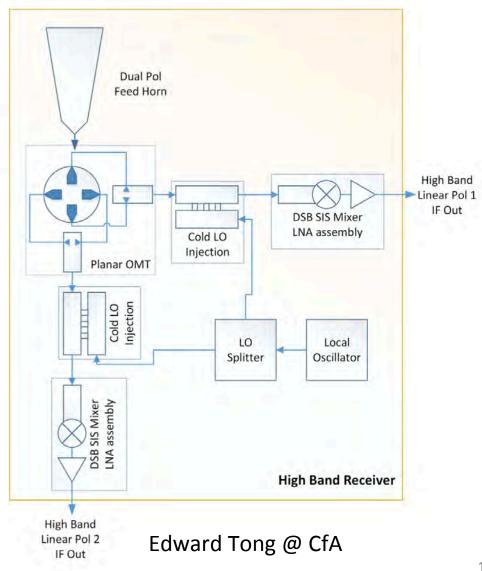

RxA is located inside the receiver cabin, which rotate with the primary dish (cryostat tipping issue)

RxA Upgrade Options

- Utilize existing space Overhaul entire configuration; dewar, optics, LO, monitor/control, calibration.
- Utilize existing space Replacing "blue" cryostat with a custom-made, closed-cycle 4K dewar.
- Dual linear pols receiver; circular polarization?
- Bandwidth goal: 4 18 GHz ?
- Single- or double-sideband mixer?
- Two-pixel or dual channel frontend?
- LO injection: Existing setup with new components, or W/G injection using YIG setup.
- Keep calibration setup?
- Reuse as much existing control and monitor interface?

RxA Upgrade – Front End

- Two DSB feeds/mixers with cold wire grid: (optical LO)
 - Identical feeds for dual pol observation (2 IF)
 - Existing mixer requires optical LO injection. LO source need to be rotated (?)
 - Different feeds for dual-channel, single sideband observation.
- Single feed with OMT: (optical injection still possible)
 - 2 DSB mixers, 2 IF outputs
 - 2 SSB mixers, with one sideband output (2 IF)
 - 2 SSB mixers, with both sideband outputs (4 IF)
- Two feed each w/ OMT: (No optical LO)
 - 2 set of 2 DSB mixers, 4 IF outputs
 - Feeds pointing at different sky; two-pixel, dual-pol (4 IF)
 - Feeds operating at different f; dual-channel, dual pol (4 IF)
 - 2 set of 2 SSB mixers, 4 (8) IF outputs, each with 8 (12) GHz bandwidth.


RxA Upgrade – IF/LO Spectrometer

- Gunn Oscillator is outdated YIG or VCO based oscillator
- LO injection scheme optical or cold injection
- IF signal process and transmission network
- IF signal conditioning and digitization
- LO tuning, possible switching, power condition and processing
- CASPER or other technology, eg, GPU.
- 5 GS, 8-bit sampler; 10 GS, 4-bit
- CASPER ROACH2 and upcoming ROACH3
- Scalable for future array receiver?

Proposed New SMA Rx Front end

With existing and underdevelopment elements

- Smooth wall feed horn
- Planar OMT
- W/G LO coupler
- Wideband SIS
- Wideband isolator
- Low noise amplifier
- YIG based LO

Example 1: Cost Estimate

Т

-:	Unit		Cost	
Category	(US\$)k	Q't	(US\$)k	Description
Cryostat	150	1	150	Custom-made, 4K cold head, compressor
Front-end	60	1	50	Single-feed, dual-pol, 2 DSB mixers, OMT
LO Source	60	1	60	YIG, power amplifer, multiplier, WG, tuner, phase lock module
Eleco &				Interface and revision of the existing board
control	10	1	10	and software
				Possible down conversion, amplification, gain
IF Processing	50	1	50	controller,
Signal tranport	30	1	30	Fiber transimission with WDM heads
				4-16 GHz, three Nyquist zone samplers, dual
ADC 10 Gs	6	6	36	pol
				Assume one R2 handles 4 GHz BW, (64Gb of
ROACH 2	15	6	90	data)
Contigen 20% 95.2			95.2	
_	Subtotal		571.2	Component cost. Lab and labor not included.

Example 2: Cost Estimate

	_		_	
_!	Unit (US		Cost	
Category	\$)k	Q't	(US\$)k	Description
Cryostat	150	1	150	Custom-made, 4K cold head, compressor
				Single-feed, dual-pol, 2 SSB mixers, OMT, 1
Front-end	60	1	100	IF from each mixer
				YIG, power amplifer, multiplier, WG, tuner,
LO Source	60	1	60	phase lock module
Elec &				Interface and revision of the existing board
control	10	1	10	and software
				Possible down conversion, amplification, gain
IF Processing	50	1	50	controller,
Signal trans	30	1	30	Fiber transimission with WDM heads
				4-16 GHz, three Nyquist zone samplers, dual
ADC 10 Gs	6	6	36	pol
				Assume one R2 handles 4 GHz BW, (64Gb of
ROACH 2	15	6	90	data)
Contig	en 20%		105.2	
	Sub	total	631.2	Component cost. Lab and labor not included.

Timeline: 24-month Scenario

- Month 0 6:
 - System design
 - Frontend development, LO injection, LO source
 - Develop spectrometer, 10Gs ADC.
- Month 7-12:
 - Acquiring cryostat
 - Prototyping frontend, LO, IF.
 - Build up spectrometer
- Month 13 18:
 - Receiving and testing cryostat
 - Testing frontend integration
- Month 19- 24:
 - System integration; test.
 - Final test and deployment