C+ Intensity Mapping in the Epoch of Reionzation and the TIME-Pilot Experiment

the TIME-Pilot Collaboration

Caltech / JPL

Jamie Bock

Matt Bradford

Bruce Bumble

Yun-Ting Cheng

Abby Crites

Steve Hailey-Dunsheath

Jonathon Hunacek

Roger O'Brient

Jason Sun

U Chicago

Erik Shirokoff

ASIAA

Tzu-Ching Chang

Patrick Koch

Chao-Te Li

Tashun Wei

UC Irvine

Asantha Cooray

Yan Gong

Bade Uzgil

RIT

Michael Zemcov

Motivation: Typical EoR Photon Originates in a Faint Galaxy

- Faint galaxies more important as we look back through reionization.
- The highest redshifts have divergent total light integrals.

3-D Intensity Mapping of Spectral Lines

- Provides automatic redshift information.
- 3rd dimension adds additional modes to the dataset.
- Still carries sensitivity to the full population.
- Measurement is with a moderate-R, high-throughput spectrometer
- CII carries 0.1-1% to total luminosity in typical star forming galaxies –
 among the brightest of all spectral features
- CII well-matched to 1-mm atmospheric windows for z=5-9

TIME-Pilot survey geometry and instrument modes.

- Want to maximize per-pixel sensitivity go deep with small area. But need to sample small k, drives to large size (don't want to rely on spectral direction solely).
- Our approach: 180-beams wide x 1 beam-thick rectangle on the sky
- Spectral coverage mapped into comoving coordinates gives large z direction: 195 to 318 GHz is z=5.0 to 8.7, a total of 1440 Mpc.

TIME-Pilot survey geometry and instrument modes.

- TP Survey geometry compares well with EoR structures
- For visualization: slice of an EoR simulation from Ilian Iliev (U. Toronto). 138 Mpc comoving slice: Orange = ionized, green = neutral
- (TP has many higher order modes as well.)

-200

TIME-Pilot instrument concept

TIME-Pilot instrument concept

- 32 waveguide grating spectrometers
 - As used in Z-Spec
 - R=100, 60 detectors each covering 186-324 GHz.
 - At least 42 channels each for science, up to 18 can be atmospheric monitors.
- 1800 absorber-coupled TES bolometers
 - time-domain (NIST) SQUID MUX, as per SCUBA-2, BICEP-2.
 - NEP of 3e-18 well in hand after BLISS / SPICA development.
- Novel 'slab' survey geometry with most of low-k information coming from spectral dimension.
 - Requires careful deconvolution between instrument modes and astrophysical k bins.

TIME-Pilot waveguide spectrometer

Multi-Flare-Angle (MFA) feed and waveguide twist

 TIME Pilot would fit above the SCUBA-2 instrument on the Nasmyth platform. Adding PTC-415 lines, pump lines, and compressors are possible.

To do:

- Mounting design
- Mirror design and fabrication
- Telescope flexure tests with extra weight
- Install power for compressor and chiller

TIME-Pilot Dataset – Expected Sensitivity

- [CII] autocorrelation spectra over the full TP band.
- [CII] EoR signal strength not known, consider various models.

Constant SFR
Gas physics calculation
Millennium sim x 3e-3

- Error bars correspond to 240 hours on target w/ JCMT.
- CO from z ~ 0.5 to 3 (multiple lines) is dominant signal in raw map (shown referred to CII survey geometry), but can be masked using galaxy catalogs.
- Cross correlations at CO frequencies with galaxy surveys can provide a CO census

TIME-Pilot for Kinematic Sunyaev-Zeldovich Effect Measurements

- TIME-Pilot includes an 11-pixel dual-pol 150 GHz array to provide broad-band sensitivity where the SZ effect is close to minimum.
- Guard channels near water lines are used to regress time-varying atmospheric emission from the science bands.
- Together, this strategy optimizes our ability to disentangle thermal SZ effect from the smaller kinematic component.

Simple line scans optimize observation efficiency, making TIME-Pilot significantly more sensitive to kSZ than broad-band 2-D mapping instruments.

TIME Pilot Development Schedule

- Year 1: Instrument Fabrication and Integration
 - cryostat, He3 cooling system, MCE SQUID readout, cryogenic cables in hand
 - optical design, prototype spectrometer, prototype TES bolometer array,
 end to end cryogenic system integration and test completed
 - prototype TES array performance test, prototype focal plane board, 32 grating spectrometers, observing software
- Year 2: Integration and Characterization
 - Instrument integration test, relay mirrors, mount, instrument rotator, engineering campaign
- Year 3 : Commissioning and Observing

TIME Pilot Development Schedule

Figure 10: TIME-Pilot development schedule; triangles denote activities already completed.

TIME Pilot targets CII emission in re-ionizing galaxies

- typically 4000 times more luminous than CO 1 \rightarrow 0 in local galaxies
- even higher for the EoR systems since they resemble the low metallicity dwarf galaxies
- CII to bolometric luminosity ratios $> 10^{-3}$ from high z measurements

Masking of low-z CO Galaxies

Amplitude of linear term: CO dominates raw variance in slab

But can remove CO signal by selecting based on total IR luminosity.

- Includes scatter in IR / CO luminosities)
- Reaches down to about 1e9 Lsun galaxy.

Only ~10% of survey voxels need to be removed. ~700 galaxies.

Need to tie optical / near-IR fluxes to total IR luminosity.

Also will need the 700 redshifts.

A well-studied field (e.g. COSMOS) with many redshift already available will be selected.

