RESOLVED ANALYSIS OF THE ISM AND STAR FORMATION PROPERTIES OF SPIRAL GALAXIES IN DIFFERENT ENVIRONMENTS

Angus Mok and Christine Wilson McMaster University

Environmental Effects

HI in M81 Group of Galaxies (Yun+ 1994)

- Denser environments dominated by quiescent galaxies (Blanton & Moustakas 2009)
- HI-deficient galaxies rises towards the centre of clusters (Solanes+ 2001)
- Possible Mechanisms:
 - Starvation (Larson+ 1980)
 - Ram pressure stripping (Gunn & Gott 1972)
 - Gravitational harassment

Environmental Effects

NGC 4522 in the Virgo Cluster (HST - http:// www.spacetelescope.org/images/heic0911b/)

- Effects on molecular gas content less clear
- Virgo spirals are not as H₂ deficient as would be expected from their HI deficiencies (Kenny & Young 1989)
- Recent results suggests some H₂ deficiency in Virgo spirals (Fumagalli+ 2009, Boselli+ 2014)

Virgo Cluster

- Nearest cluster to us, at a distance of ~16.7 Mpc
- Rich with infalling spiral galaxies

Virgo Cluster (APOD - http://apod.nasa.gov/apod/ap110422.html)

Nearby Galaxies Legacy Survey (NGLS)

- Sample of 155 HI-flux selected galaxies in the nearby universe (Wilson+ 2012)
- All: Hα, JCMT
- Some: VLA, Herschel, Spitzer

NGC 4567 and 4568 (http://www.sdss.org/)

CO(3-2) Observations

- Sample of 98 gas-rich spiral galaxies from the NGLS and follow-up surveys
- Map the CO(3-2) transition using HARP on the JCMT
 - 19 mK (T_A*) out to at least D₂₅/2 at 20 km/s
 - 14.5" angular resolution

Molecular Gas in Galactic Environments - 2016

VLA HI Observations

-22°50'00.0

Dec (J2000)

52'00.0'

54'00.0'

56'00.0

58'00.0

-23°00'00.0"

-21°28'00.0'

Dec (J2000)

30'00.0"

32'00.0'

34'00.0'

36'00.0'

38'00.0'

- 30 galaxies
- D-array (~60" resolution)
 - Pilot VLA program in 2007 (AW701) - 9 spirals
 - Follow-up program (15B-111) - 5 spirals
- VLA Imaging of Virgo in Atomic Gas (VIVA) Survey (Chung+2009)
 - 16 spirals
 - High resolution

Integrated Galaxy Properties

- 44% of the spiral galaxies are CO detected
 - Use technique of survival analysis to incorporate upper limits
- Virgo galaxies show an enhancement in their molecular gas content
 - Environment aiding in conversion to H₂

Cumulative distribution functions for the 3 environments (Figure 1 from Mok+ 2016)

Integrated Galaxy Properties

- 44% of the spiral galaxies are CO detected
 - Use technique of survival analysis to incorporate upper limits
- Virgo galaxies show an enhancement in their molecular gas content
 - Environment aiding in conversion to H₂

Cumulative distribution functions for the 3 environments (Figure 1 from Mok+ 2016)

Gas Depletion Times

- Combine with Hα star formation rate data (Sánchez-Gallego+ 2012)
- Longer molecular gas depletion times in the Virgo sample
 - Environmental effects (heating process, pressure, stabilization in disk)
 - No differences found in the HI gas depletion times

Cumulative distribution functions for the 3 environments (Figure 2 from Mok+ 2016)

Radial Trends

- Create radial annuli around the center of each galaxy
- From the HI data, disk size appears to be smaller for Virgo galaxies after normalization by R₂₅

HI radial averages for the galaxies in our sample, normalized by ${\rm R}_{\rm 25}$ and subdivided by environment

Radial Trends (CO)

- Applied the same process to CO data, including normalization by R₂₅
- No signs of a truncation in the H₂ disks of Virgo galaxies

 $\rm H_2$ radial averages for the galaxies in our sample, normalized by $\rm R_{25}$ and subdivided by environment

Next Steps

- Combine H₂ and HI data
 - Create ratio maps to distinguish between different scenarios
- Incorporate available Hα SFR maps

Jec (J2000)

- Determine resolved star formation rates and gas depletion times in radial bins
- Pixel by pixel analysis (KS laws, gas depletion times)

contours overlaid

Conclusion

- Created a large sample of gas-rich nearby spiral galaxies in different environments
- Enhancement in the molecular gas content and molecular gas depletion times for Virgo galaxies
- No signs of a truncation in the H₂ disks for the Virgo galaxies, compared to their HI disks

(3-2) contours overlaid