The JCMT users meeting

Studying the thermal state of molecular gas with JCMT

Yan Gong (龚䶮) Purple Mountain Observatory

April 19th 2016, Mitaka, NAOJ, Japan

outline

- Why kinetic temperature?
- how to derive kinetic temperature?
- examples
- summary

How important is the kinetic temperature of molecular gas?

- a fundamental parameter in all physical and chemical processes:
 - balance result between cooling and heating processes
 - directly affect chemical reaction rates
 - sound speed

$$\sqrt{rac{\gamma k T_{
m kin}}{\mu m_{
m H}}}$$

Mach number: shocks

• Jean Mass:
$$\simeq (2 \text{ M}_{\odot}) \left(\frac{c_s}{0.2 \text{ km s}^{-1}}\right)^3 \left(\frac{n}{10^3 \text{ cm}^{-3}}\right)^{-1/2}$$

and so on

How can we measure the kinetic temperature?

COLTE the most abundant molecule after H₂

- method
 - CO optically thick
 - Tex from RT equation
 - populations fully thermalised : Tex = Tkin
- shortcoming:
 - not LTE, populations not fully thermalised

$\begin{array}{c} CO\ LTE \\ \text{the most abundant molecule after H_2} \end{array}$

- method
 - CO optically thick

Any other more accurate method?

Yes, non-LTE radiative transfer

- shortcoming:
 - not LTE, populations not fully thermalised

CO non-LTE

- method
 - multiple-J CO lines J=1-0, 2-1, 3-2
 - solve the statistical equilibrium equation (non-LTE RT): gives us kinetic temperature and density
 - possible: JCMT (2-1, 3-2) data in combination with the MWISP (1-0) data can be used to do the method

- MWISP: the Milky Way Imaging Scroll Painting project
 - simultaneous observations of ¹²CO ¹³CO C¹⁸O (1-0) with the PMO-13.7 m telescope
 - large-scale: targets the northern Galactic plane and several other regions of interests
 - information website: <u>http://www.radioast.nsdc.cn/</u> <u>mwisp.php</u>

Gong et al. (2016), A&A, 588, 104

So, if we have supplementary JCMT data in combination with the MWISP data, we can study physical properties of molecular gas

Gong et al. (2016), A&A, 588, 104

However

- shortcomings of multi-J CO lines
 - different beam sizes
 - usually cannot be obtained with only one telescope
 - different calibrations, different pointing accuracy

However

Any other method to overcome these shortcomings?

- usually cannot be obtained with only one telescope
 Yes, use H₂CO
- different calibrations, different pointing accuracy

- $p-H_2CO 218$ GHz lines, close in frequency, $\Delta Ka = 2$
- fall in JCMT RxA band
- can be obtained simultaneously
- the ratios free of pointing accuracy, calibration errors, different beam sizes
- abundance changes little $(10^{-10} \sim 10^{-9})$

RADEX: H₂CO

to derive kinetic temperature

examples of 218 GHz H₂CO line observations

Another example

IRAM 30m mapping observations of a dust clump

higher than the kinetic temperature (~30 K) derived from NH₃

a temperature gradient across the clump not radial profile (r ~ T^{-a}) Heating mechanisms? outflows?

The NH₃ thermometer has a more limited temperature range with only (1,1) and (2,2) lines

Ginsburg et al. (2015): warm gas by turbulent heating

summary

- JCMT data + the MWISP data: multiple-J rotational transitions of CO lines can be used to study the properties of molecular gas
- JCMT observations of 218 GHz H₂CO lines can be used to study the temperature of dense clumps

Hope that I can obtain the JCMT data in the future

Thanks for your attention!

Herschel

Maxwell

Sorry man, your telescope is already dead, but my telescope still survives

• a symmetry top molecule

abundances change a lot not accessible with JCMT

- A widely used thermometer
- inversion lines: (1,1), (2,2) close in frequency (23.7 GHz)