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JINGLE: project overview

SCUBA-2 RxA
250 h, weather bands 2-4 530 h, weather bands 4-5
850um observations of 195 galaxies CO(2-1) observations of 75 galaxies

Survey objectives

JINGLE team ® deriving scaling relations between dust
properties (mass, temperature, emissivity)
and global galaxy observables.

® studying the dust-to-gas ratio and its
variations across the galaxy population.

95 members from all the
JCMT partner regions

m16al005 - JINGLE

® UK

.o ® benchmarking relations that can be used to
o I infer gas masses for large samples of high-
e EAO redshift galaxies.

® investigating the correlation between ISM
properties and the dynamics of galaxies.




JINGLE: sample and survey strategy

 SAMPLE SUMMARY Sample builds on multiple surveys

ZFSCuBAZHRxA Iy ® H-ATLAS: Herschel PACS+SPIRE
| "o % o o photometry
® GALEX/SDSS/WISE: UV-to-NIR
photometry

® MaNGA/SAMI: optical IFU maps
® Apertif/ASKAP surveys: HI maps
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Context: the current view on galaxy evolution

the star formation “main sequence”
see e.g.: Schiminovich et al. (2007), Elbaz et al. (2007), Noeske et al. (2007),
Daddi et al. (2007), Perez-Gonzalez et al. (2008), Peng et al. (2010)
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SFR ~ Mx?(1+z)® where a~0.8, b~2.5

discs
- Galaxies on the main sequence (MS) contribute

~90% of the star formation.
- Duty cycles on the MS are high at 40-70% implying bulges
that “catastrophic” events like major mergers
cannot be the main agent responsible for
regulating star formation.

SFR

Mass



Context: the current view on galaxy evolution

lllustration of the gas-regulated model

halo
"\ to the
gas inflow into halo ﬁ% reservoir
gas inflow into galaxy wind outflow S
C — _ N
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Star formation is regulated by the mass of gas in a reservoir, which itself is affected by the
inflow rate, the star formation efficiency, and the mass loading factor of outflows.

Lilly et al. (2013), see also, e.g. Genel et al. (2008), Bouché et al. (2010), Davé et al. (2011,2012), Krumholz & Dekel (2012)



Science motivation #1: What is the link between the physics of star formation
on small scales and the properties of entire galaxies?

Correlations of integrated gas content with spatially-resolved quantities:

= The molecular gas mass fraction correlates well with stellar mass, stellar mass surface
density, and specific star formation rate, though with large scatter in a large complete
sample.

= Drop in molecular gas content related to galaxy internal structure.

= Probe SF efficiency as a function of gradients in 2D galaxy properties (stellar /

ionised-gas) measured from optical spatially-resolved spectroscopic data provided by
MaNGA.
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Science motivation #1: What is the link between the physics of star formation
on small scales and the properties of entire galaxies?

Correlations of integrated gas content with spatially-resolved quantities:
MaNGA: Mapping Nearby Galaxies at Apache Point Observatory (Bundy etal. 2015

1 LA L B At ® 10,000 SDSS galaxies at 0.01<z<0.15

. - ® Mass-limited sample: Ig(Mstar)>9.0

SAMI

- ~\‘

. Spatial resolution = 2" (1-2 kpc)
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Spectral resolution = 50-70 km/s
® Spectral coverage: 3600 - 10000 AA
® Spectral S/N = 4-8 at 1.5 Re
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Science motivation #1: What is the link between the physics of star formation
on small scales and the properties of entire galaxies?

Some important questions:

= Do the properties of the GMC population of a galaxy depend on its global
properties?

= How does the environment influence the formation of GMCs?

= Once GMCs are formed, does star formation occur with the same efficiency in
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Science motivation #1: What is the link between the physics of star formation
on small scales and the properties of entire galaxies?

ALMA/NOEMA studies of the GMCs in a range of nearby galaxies:

@ LMC @ M33 @ N628 @ N6946 @ M5
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Science motivation #2: How efficient is star formation in low mass galaxies
and/or at high redshifts?
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Are low mass galaxies under-luminous in CO at fixed SFR
because they have high SF efficiency, or because CO is a
poor tracer of total molecular gas?



Technical challenge How do we increase the accuracy of molecular gas
measurements?

An alternative approach to CO line observations:

FIR/submm dust mass gas mass
continuum measurements estimations
observations
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Technical challenge How do we increase the accuracy of molecular gas
measurements?

An alternative approach to CO line observations:

FIR/submm dust mass gas mass

continuum measurements estimations
observations

Example SED Fit to Galaxy UGC02369 Casey (2012)
N’n:::; 3 10.0 - o i "-.:,::i -

10.0 ;El

3 3 Mgas = M GDR
Z = gas dust X
= 1.0 = 1.0
1 1
[~ L [
& 3
5 i J _g m 1000 Ty v P rrroprrror oy r gt
w i o I w & L p
oal - .’ o1k "-\_.\ ® 2>2 lensed galaxies
U U GB Ik - ) 1
i | IRAS Toy = 50.9K GB i \\ , A z=1 GOODS~-N
i ’ - B z-0 Leroy+11
1 1 1 L 1
10 100 1000 10
Rest—Frome Wovelength (um) Rest—Fro

4 v Y E -
| C Nooom=12 | | g
10.0 E ,;/ N ree=9 3 10.0 -
~S ~ S S = ’ |
~ e < \
2 1.0F = 1.0k o N
2 2 F = Y
@ 3 o .
5 | P ]
* % N
e e o
o 0. & 100 ] b A
) Mult.GB logLg = 11.63  []) : < ! N |
Tam = 32K i . q
\ N
1l 1 N 4
10 100 1000
Rest—Frame Wovelength (um) Rest—Fra l0g8oon=9.36-0.85Z (z=0)

logbese=9.593 13 ~0.85Z (z>2)

80 82 84 86 88 9.0 92
12+log(0/H)

'H-ATLAS

Saintonge et al. (2013)



JINGLE: status of observations

Survey is 13% complete!

< 70+1 galaxies with SCUBA-2 and 1 galaxy with RxA observations so far.
< Among the 70 galaxies, 42 galaxies are done; 28 galaxies will be

observed by RxA.

Credit: Matthew Smith
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JINGLE: status of observations

Observations in Grade 2 weather finished.

More progress on our sample is being delayed by
the extremely good weather in Hawaii this year!

SCUBA2
Observations
Total Number 71
Observed
Detection 62%
(>50)
Probable | 1%
Detection
(4.5-50)
Possible 7%
(3-4.50)
Non-detection 20%

Number Observations

Number Observations

0.05

| Grade 1 ! Grade 2 ' Grade 3

0.10

Grade 4 Grade 5 |
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Credit: Matthew Smith



Some first SED modelling results

Our SCUBA 850 micron predictions were based on an extrapolation of modified blackbody fit (MBB) with dust
emissivity index beta=2 to the Herschel data points.

In a first preliminary test cases, we find that most of the SCUBA850 micron fluxes agree with this beta=2

model, or are somewhat below are predictions.
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Some first SED modelling results

Based on the SCUBA data, we get more accurate dust masses. For the test cases presented here, dust masses are mostly
consistent with the Herschel derived dust masses, but can be up to 0.3 dex higher due to the lower derived Ty:.

In the future, we will have more constraints on the variation of the dust emissivity index for a wide ranges of galaxies. We will
be able to relate changes in the dust emissivity to galaxy properties, which will help us understand dust evolution processes.

Fit to Herschel data: beta=2
- Fit to Herschel+SCUBA data
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Thank You!






Science motivation #1: What is the link between the physics of star formation
on small scales and the properties of entire galaxies?

Correlations of integrated gas content with spatially-resolved quantities:

log Myue/M.

The molecular gas mass fraction correlates well with stellar mass, stellar mass surface
density, and specific star formation rate, though with large scatter in a large complete
sample.
Drop in molecular gas content related to galaxy internal structure.

Probe SF efficiency as a function of gradients in 2D galaxy properties (stellar /
ionised-gas) measured from optical spatially-resolved spectroscopic data provided by
MaNGA.

A large and systematic survey is necessary (right panel).
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Technical challenge How do we increase the accuracy of molecular gas

measurements?
Z=Z@ Z<Z®
X N\
HI H- Hzc HI H: HC
c?c c?c
(0 (On

the [CII]/CO ratio should track variations in the
level of photodissociation of CO, and therefore
give us a handle on Xco

example galaxy: Herschel/PACS and IRAM-30m
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