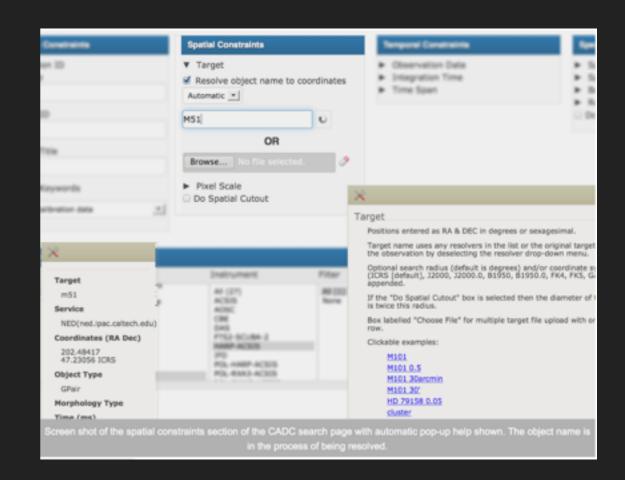

JCMT SCIENCE ARCHIVE


All areas of the sky observed by SCUBA-2 on the JCMT. This includes legacy survey fields as well as publicly available data (as of 2014).

JCMT SCIENCE ARCHIVE: PUBLIC DATA

- JSA is the home for all JCMT data, both proprietary and public.
- http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/search/
- Available: raw and reduced observations, and nightly coadds.
- Lots of public data: JCMT science observations (usually) become public a year after the end of the semester in which it was taken.
- All JAC/STFC era observations are now public!
- Archival data: do science without having to write a proposal!
- Archival data was recently all re-reduced with current pipelines: high quality products!
- JCMT Legacy Release 1 was on Sep 2015 see Monday's talk, or JCMT web site.

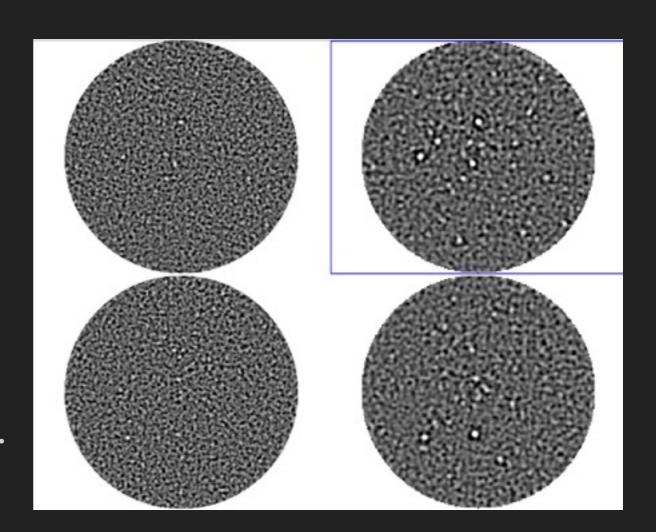
JSA: HOW TO SEARCH

- Use collection=JCMT to search only JCMT telescope data sets.
- Project search parameters:PI, project ID, project title
- Observation search parameters: source/position, frequency, date
- Telescope specific options: instrument, observation type,
- Other JCMT collections: JCMTLS does/ will contain data products produced by legacy surveys/large programs.

0 *	Target Name	RA (32000.0)	Dec. (J2000.0)	Start Date *	Sequence Nu	Instrument	Rest-frame Specti	a Filter	Int. Time	Field of V
liter:										
		HMS -	DIMIS -	Calendar *			GHU *		Seconds ×	Sq. deg
	3C273	12:29:06.97	+02:03:32.6	2012-02-28 10:55:	38	SCUBA-2		SCUBA-2_850um	4.102	0.0659
0	IRC+10216	09:47:59.87	+13:17:37.7	2012-04-30 07:10:	21	SCUBA-2		SCUBA-2_850um	3.948	0.0831
0	MACSJ1229.0	12:29:04.08	+47:38:05.3	2012-02-28 12:01:	46	SCUBA-2		SCUBA-2_450um	27.949	0.0794
0	CRL2688	21:02:20.96	+36:41:50.8	2012-04-30 14:02:	47	SCUBA-2		SCUBA-2_450um	1.032	0.0833
0	CRL2688	21:02:20.96	+36:41:43.8	2012-04-30 14:02:	47	SCUBA-2		SCUBA-2_850um	3.921	0.0809
0	3C273	12:29:07.50	+02:03:33.6	2012-02-28 10:55:	38	SCUBA-2		SCUBA-2_450um	0.865	0.0749
0	MARS	10:30:27.34	+11:38:56.2	2012-04-30 04:48:	10	SCUBA-2		SCUBA-2_450um	1.019	0.0639
0	Oph A-3	16:26:33.00	-24:24:42.0	2010-07-22 09:47:		HARP-ACSIS	372.421340000		120.000	0.0011
0	MARS	10:30:27.00	+11:38:53.2	2012-04-30 04:48:	10	SCUBA-2		SCUBA-2_850um	3.923	0.0630
0	MARS	10:30:27.16	+11:38:50.2	2012-04-30 04:52:	-11	SCUBA-2		SCUBA-2_450um	2.709	0.0659
0	MARS	10:30:26.82	+11:38:49.1	2012-04-30 04:52:	11	SCUBA-2		SCUBA-2_850um	10.583	0.0633
	37.7+0.3	18:58:54.57	+04:22:11.6	2010-09-22 08:15:	21	HARP-ACSIS	329.330545300		10.625	0.1548
0	IRC+10216	09:47:59.87	+13:17:37.7	2012-04-30 07:10:	21	SCUBA-2		SCUBA-2_850um	3.948	0.0831
	Oph A-2	16:26:27.80	-24:24:02.0	2010-07-22 09:29:		HARP-ACSIS	372.421340000		120.000	0.0012
0	MARS	10:30:33.04	+11:38:43.8	2012-04-30 07:58:	23	SCUBA-2		SCUBA-2_850um	3.562	0.0825
0	ABELL 1689	13:11:29.00	-01:18:57.8	2012-04-30 09:24:	34	SCUBA-2		SCUBA-2_850um	70.719	0.0704
	1807+698	18:07:01.14	+69:49:58.1	2012-04-30 14:16:	50	SCUBA-2		SCUBA-2_850um	11.741	0.0790
	Showing all	30010								(4)

JSA: HOW TO TELL IF THE DATA ARE USEFUL?

- Look at the preview images! These are taken from the reduced data, and should give a first impression of how useful the data are.
- Data marked as 'BAD/QUESTIONABLE' in the OMP will have a flag of 'FAIL' in the 'requirements' column: avoid or use with caution.
- JUNK data is not by default visible through Advanced Search.
- Download and have a look! (NB: Reduced SCUBA-2 data is much smaller in size than the raw data.)
- If in any doubt, always ask EAO for advice: <u>jsa-help@eaobservatory.org</u>, <u>s.graves@eaobservatory.org</u>, or <u>helpdesk@eaobservatory.org</u>


VO-SPACE AND CANFAR

- VOspace: great way of sharing JCMT data sets with your collaborators. Uses CADC names that you already have! Already extensively used by previous Legacy Surveys.
- CANFAR: powerful computation resources available for astronomical research, integrated with VO space and archive.
- See JJ for more information!
- If you want to get started but need help, or are having problems, you can always ask EAO staff, as well as CADC directly.

MATCHED FILTERS

MATCHED FILTERS

- Wavelet analysis used for optimal point source extraction.
- Requires PSF of the telescope/ instrument to be known (see Dempsey+ 2013)
- Some subtleties in recovered source brightness – careful analysis required.
- See Cayón, L. et al., 2000, Isotropic wavelets: a powerful tool to extract point sources from cosmic microwave background maps, MNRAS, 315, 757

MATCHED FILTERS IN ORAC-DR AND PICARD

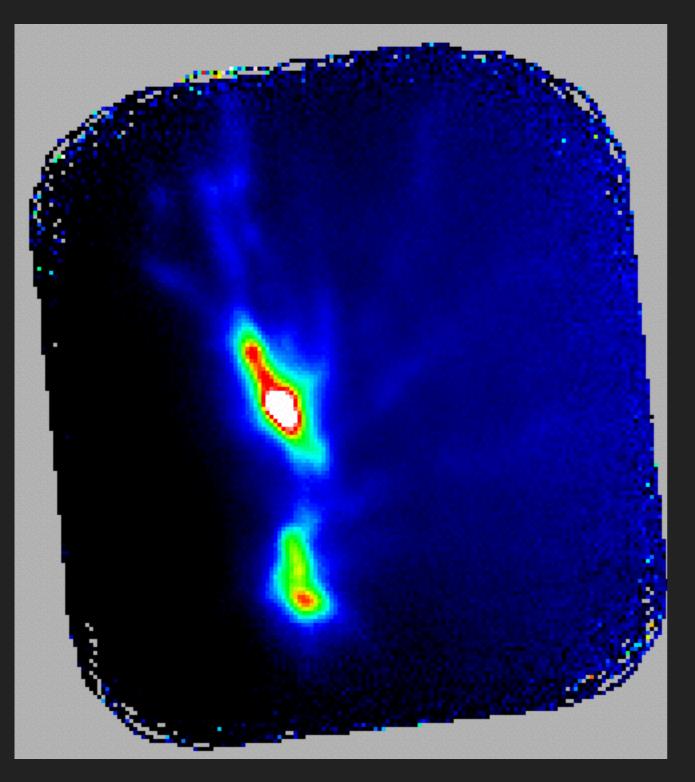
- Some ORAC-DR recipes will automatically apply a matched filter to the group co-add product (but not to the individual observation reductions):
 - REDUCE_SCAN_FAINT_POINT_SOURCES
- ▶ There is also a PICARD recipe to apply a filter to any reduced SCUBA-2 map:
 - SCUBA2_MATCHED_FILTER
- Summary of method as implemented in ORAC-DR and PICARD:
 - 1. Smooth the map and the PSF (by default with a 30" Gaussian).
 - 2. Subtract smoothed images from originals.
 - 3. Convolve residuals.

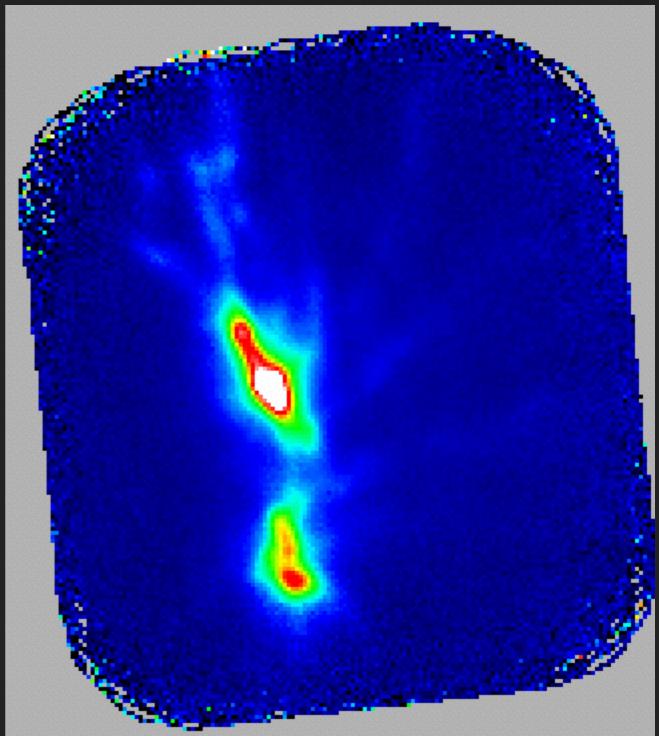
MATCHED FILTER TUTORIAL

- An example tutorial showing you how to run the PICARD recipe on a pipeline-reduced file is available.
- (The example observation used for the tutorial is not the most exciting example).
- If you are interested, please also try running the ORAC-DR recipe REDUCE_SCAN_FAINT_POINT_SOURCES on raw data containing point sources.

EXTERNAL MASKS

EXTERNAL AST MASK

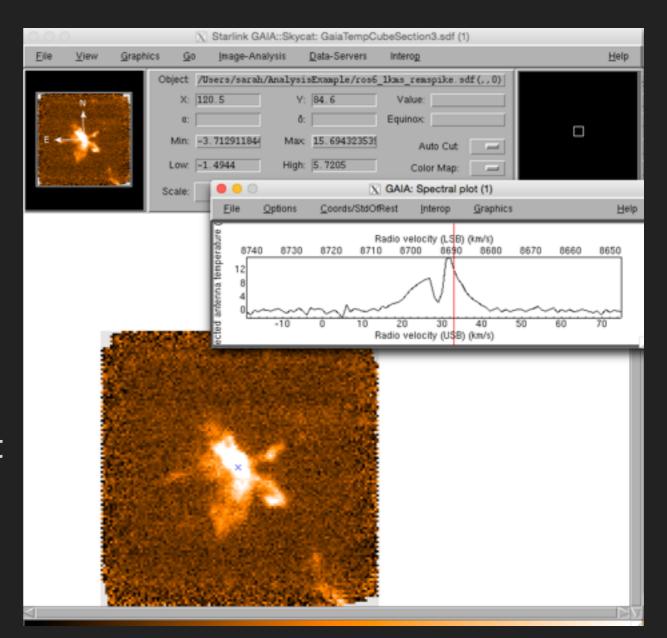

- makemap functions by attempting to iteratively divide bolometer input into different models. (COM, FLT, AST, RES)
- There is degeneracy between the common mode (COM) and the astronomical signal (AST),
- This can produce fake large scale structure across the output map.
- Most of the standard makemap configs automatically derive an AST mask in each iteration, and then force the AST model to 0 outside this mask at the end of each iteration.


EXTERNAL AST MASKS

- If you already know where the emission will be, you can instead provide an external AST mask to constrain the solution. This can improve your final map.
- You can use either the results of an initial round of SCUBA-2 DR (and mosaicing), or with caution you can use a map from another telescope.
- It is particularly helpful for reducing negative bowling and background structures.
- Usually used when trying to recover as much large scale structure as possible.

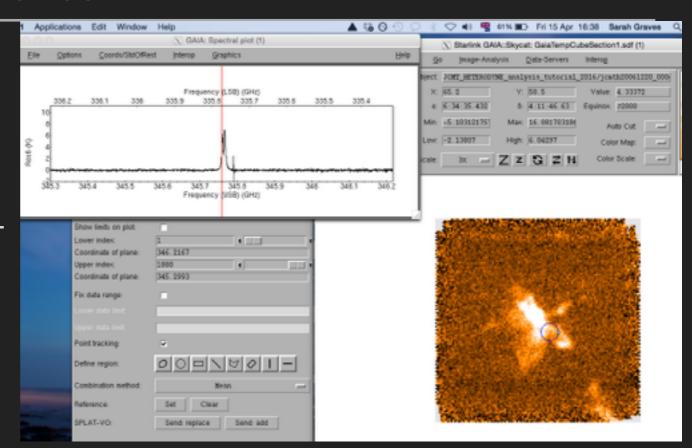
MASKING CONSIDERATIONS

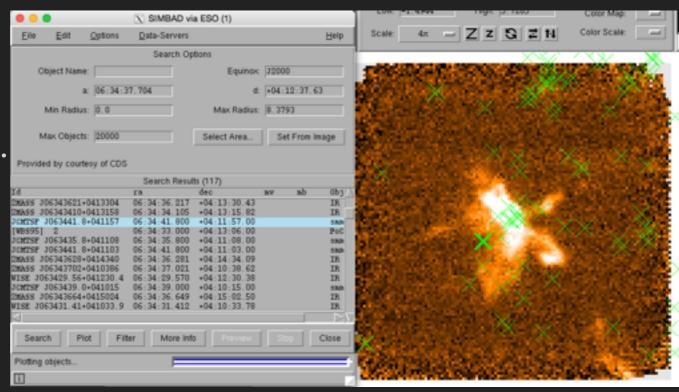
- Masking (whether auto-masking or through an external mask) affects the resulting map.
- Source recovery, particularly of extended sources, varies inside and outside the masked region.
- See Mairs+2015 for a detailed comparison of source recovery between two different SCUBA-2 makemap approaches. (comparing GBS with JCMT LR1)
- Identifying masked regions: Examine the quality array of the map, either with GAIA or KAPPA to see where the FLT and AST masks are.
 - See article on the Pipelines and Archives blog: http://pipelinesandarchives.blogspot.jp/2014/06/interpreting-scuba-2-map-quality-arrays.html


EXTERNAL MASKING: TUTORIAL

- A tutorial guiding you through how to perform external masking has been provided.
- The small example data set we have is not ideal for demonstrating this, but should work on a laptop and allow you to see the method.
- If you are interested, please download a PONG map with complex structure from the archive and try this at home!
- Documentation: see SC/21 section 6.6.

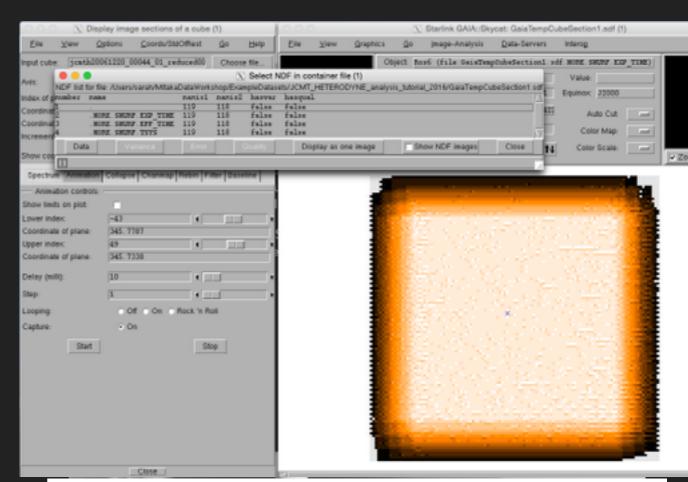
EXAMPLE HETERODYNE ANALYSIS WITH GAIA

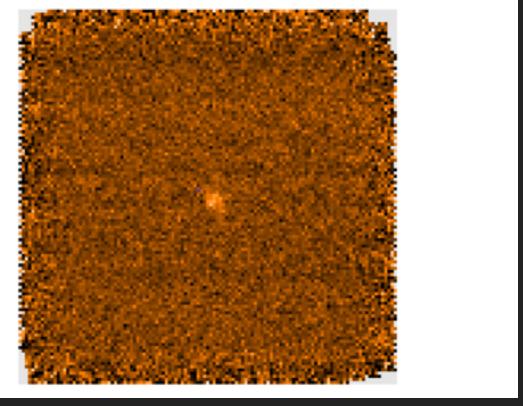

GAIA


- GAIA is the Starlink visualisation GUI.
- It is great for interactively examining maps and cubes.
- To get you started, these slides list a few of the features you may want to use when examining a new Heterodyne data cube.
- Works on FITS and SDF files.

MITAKA WORKSHOP: ADVANCED TOPICS FOR JCMT DATA

- Open up a cube in Gaia
- (The cube toolbox should automatically appear; if it is accidentally closed do File->Open Cube)
- Left clicking will extract a spectrum from that position. You can also click & drag.
- In the spectral window, you can set the coordinates.
- Use the Define Region button to look at spectra averaged over your chosen region.
- Search SIMBAD or NED for sources through Data Servers->Catalogs->SIMBAD/NED.

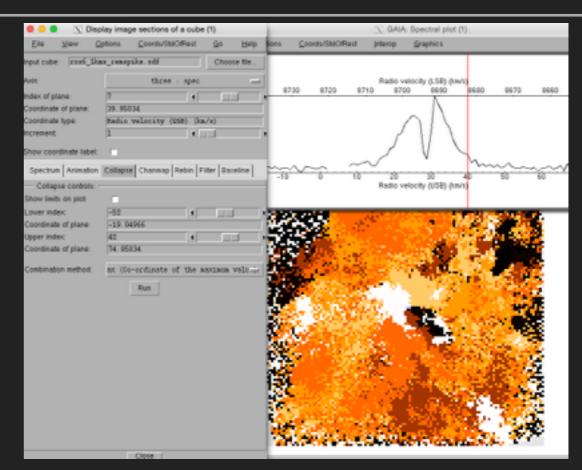

MITAKA WORKSHOP: ADVANCED TOPICS FOR JCMT DATA

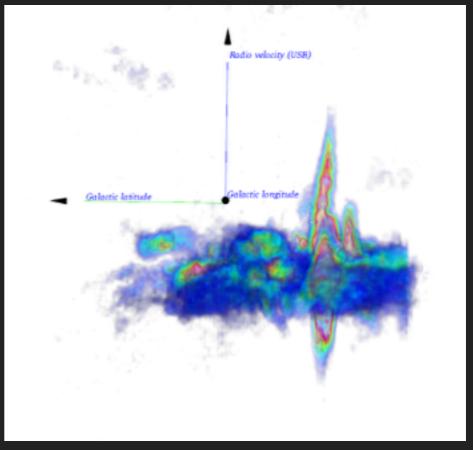

Look at the exposure time map (may require you to have converted the file to SDF first)

Go to View->Select FITS HDU/NDF, and select exposure time.

Capture a movie of your spectra.

Use the 'animation' tab in the cube window and select 'Capture' to produce an animated gif (in the working directory).




MITAKA WORKSHOP: ADVANCED TOPICS FOR JCMT DATA

Collapse your map with a variety of different mathematical kernels, to produce e.g. noise maps, intensity maps, first and second moments, coordinate of the max.

(Shown: coordinate of the peak pixel)

 Create volume rendering or iso surface rendering of your cube (in the cube window do:View->3D visualisation)

Many other features, including:

- Fit baselines to manually chosen regions of your data.
- Create channel maps.
- Detect objects
- Plot custom local catalogs.
- Compare 2 cubes interactively.
- Contouring different maps on top of each other.

EXAMPLE HETERODYNE ANALYSIS: SCRIPTS/SHELL

EXAMPLE SCRIPT FOR SHELL COMMANDS

- A fairly simple example script showing shell usage of Starlink for data analysis is provided on the tutorial page.
- Please use the Starlink documentation to find out more about any of the commands used that look useful.
- Try similar commands out on your own data, or on interesting looking public archive data!

PYTHON SCRIPTING

- We are currently developing a python wrapper package, for calling Starlink commands easily within python scripts.
- If you would be interested in this, please let me (Sarah Graves) know: s.graves@eaobservatory.org
- There is already a package starlink-pyndf available for reading in NDF files into python data arrays, along with their meta data and AST WCS objects.