# An Introduction to SCUBA-2 Data Reduction

#### Mark G. Rawlings

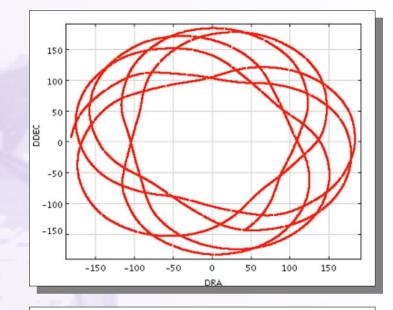
#### East Asian Observatory / JCMT

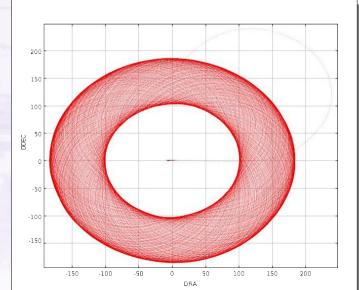
JCMT Users' Meeting 2016, Mitaka



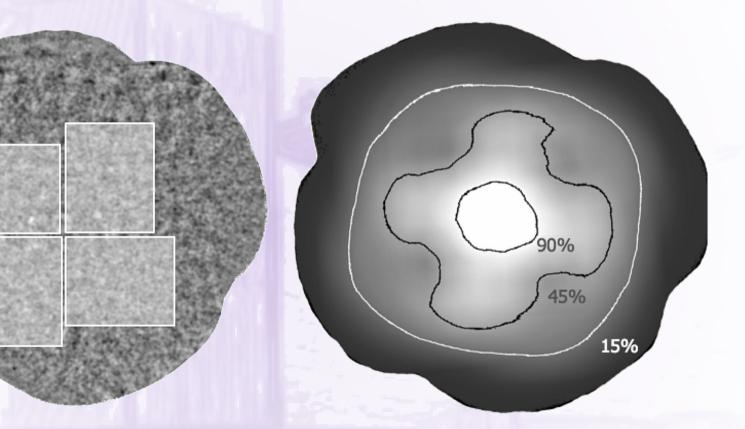
## Overview

- SCUBA-2 Observing Modes
  - Basic dataset characteristics
  - Daisy & Pong
- SCUBA-2 Data Reduction Pipeline (ORAC-DR)
  - Running ORAC-DR for SCUBA-2 data
  - Output summary: reduced data files
- Map Maker
  - What it is, what it does
  - Recipes: Standard & Customized
- Example Outputs
- Additional Help


## SCUBA-2 Datasets


- Obtainable from JCMT data archive at CADC
- 2D continuum imaging data at 450 and 850  $\mu{\rm m}$
- Four arrays of bolometers labelled a, b, c & d for each wavelength (8 total)
- Starlink NDF files with specific naming convention
  - For example: **s8a20160322\_00013\_0004.sdf** means:
    - S8a indicates data from SCUBA-2 850 $\mu$ m "a" array
    - 20160322 observation UT date (this case: 22<sup>nd</sup> March, 2016)
    - 00013 index that uniquely identifies observation for that UT date (in this example, 13th observation)
    - 0004 sub-scan index that identifies each specific block of 30 seconds of data within a single observation
    - .sdf indicates that file follows *Starlink* NDF format

## SCUBA-2 Observing Modes: CV Daisy Scan Pattern


- "CV" = Constant Velocity
- Modulates sky spatially & temporally
- Covers same positions at different angles & cross-links scans
- Maximizes central exposure time but less-uniform depth
- Good for (e.g.) point sources

Telescope track from 30-sec (upper) & 30-min (lower) observations



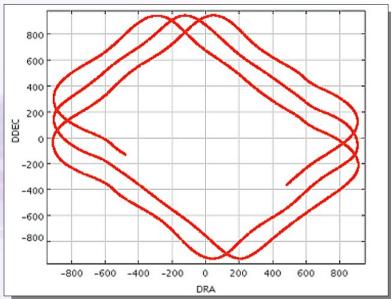


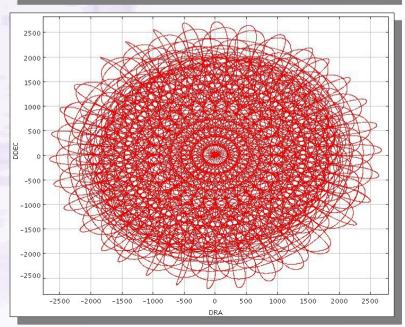
## SCUBA-2 Observing Modes: Daisy Field Coverage



Field diameter ~13 arcmin

#### Image plane


Exposure time


For a Nyquist-sampled output map, exposure time in central 3' region ~0.25 × elapsed time

# SCUBA-2 Observing Modes: Pong Scan Pattern

- Modulates sky spatially & temporally
- Covers same positions at different angles & cross-links scans
- Maximize field coverage & provides more uniform exposure time across field; less central depth
- Good for (e.g.) extended sources
- 900", 1800", 3600" & 7200"

Rotating *Pong* for large fields. 30-sec subscan (upper) & ~40-min observation (lower)





## SCUBA-2 Observing Modes: Pong Field Coverage

Field diameter 30 arcmin 95%

Image plane

Exposure time

50%

For a Nyquist sampled output map, exposure time in central 3' region ~ 0.014 × elapsed time

# Running the SCUBA-2 Data Reduction Pipeline: ORAC-DR

• **Step 1:** Initialise ORAC-DR (for chosen SCUBA-2 frequency)

% oracdr\_scuba2\_850 -cwd

• Step 2: Set environment variables

These ensure data are read from & written to correct locations. Many set automatically when pipeline initialised, but others must be set manually (see *Starlink* document *SUN/264*).Three main ones:

- **STARLINK\_DIR** Location of Starlink installation
- ORAC\_DATA\_IN Location from where data should be read. If supplying text file listing raw data, this should be that file's location
- ORAC\_DATA\_OUT Location where data products are to be written. Also used as the location for any user-specified configuration file
- Step 3: Run the pipeline

% oracdr -loop file -files <list\_of\_files>

where <list\_of\_files> to be reduced can be one or more observations

| 🔀 💿 ORAC-DR SCUBA2_850                                                                                                                                                                    | $\odot \odot $                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Exit ORAC-DR     Pause ORAC-DR     SCUBA2_850: ORAC-DR reducing observation 53                                                                                                            | Running                                         |
| Checking for next data file: raw/s8d20120529_00053_0035.sdf<br>Checking for next data file: raw/s8d20120529_00053_0036.sdf                                                                |                                                 |
| Checking for next data file: raw/s8d20120529_00053_0037.sdf<br>Checking for next data file: raw/s8d20120529_00053_0038.sdf<br>Checking for next data file: raw/s8d20120529_00053_0039.sdf | ORAC-DR                                         |
| Checking for next data file: raw/s8d20120529_00053_0040.sdf<br>Checking for next data file: raw/s8d20120529_00053_0041.sdf<br>Checking for next data file: raw/s8d20120529_00053_0042.sdf | for                                             |
| Checking for next data file: raw/s8d20120529_00053_0043.sdf<br>Checking for next data file: raw/s8d20120529_00053_0044.sdf                                                                |                                                 |
| Checking for next data file: raw/s8d20120529_00053_0045.sdf<br>Storing: s8a20120529_00053_0001<br>A new group 20120529#53#850 has been created                                            | SCUBA-2                                         |
| Sorting Groups<br>REDUCING: s8a20120529 00053 0001                                                                                                                                        |                                                 |
| Using recipe REDUCE_SCAN_EXTENDED_SOURCES provided by the frame<br>Obs #53 Observing mode: scan / Observation duration: 24.4 min                                                          | ORAC-DR can:                                    |
| This is an observation of STG_358.9780.405<br>MAKEMAP_CONFIG_TYPE is bright_extended                                                                                                      |                                                 |
| Makemap is using dimmconfig file /stardev/share/smurf/dimmconfig_bright_extended.lis<br>Calling makemap using iterate method                                                              | Run Map Maker                                   |
| Calculating output map size Size within limits, no need to tile.<br>Making map from 180 input files - this may take a while a REALLY long while please be patient                         | (primary                                        |
| ₩arnings                                                                                                                                                                                  | operation)                                      |
| △ ORAC-DR warning messages                                                                                                                                                                | <ul> <li>Apply FCF (to get mJy/beam;</li> </ul> |
|                                                                                                                                                                                           | see later)                                      |
|                                                                                                                                                                                           | Co-add                                          |
| Errors                                                                                                                                                                                    | observations of                                 |
|                                                                                                                                                                                           | same source                                     |
|                                                                                                                                                                                           | Apply matched-                                  |
| Results                                                                                                                                                                                   | filtering                                       |
| △ ORAC-DR results                                                                                                                                                                         | Run source-<br>finding algorithm                |
|                                                                                                                                                                                           |                                                 |

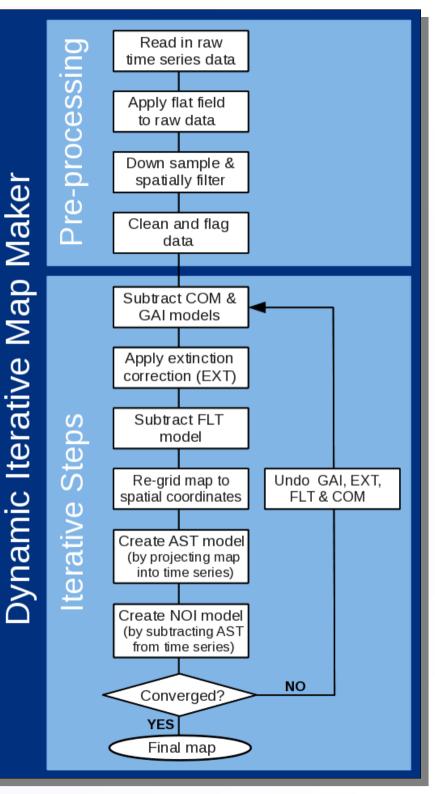
## **ORAC-DR** Output

Output files (which have had standard peak Flux Conversion Factor applied):

- log.group File containing all raw data included in reduction
- s20141024\_00033\_850\_reduced.sdf Reduced file from single observation
- s20141024\_00033\_850\_reduced\_\*.png Image files of individual reductions
- log.mapstats File containing information on the individually reduced data
- **log.nefd** File containing NEFD information from raw data
- log.noise File containing noise information from reduced data
- gs20141024\_00033\_850\_reduced.sdf Group file, i.e. all reduced files coadded
- gs20141024\_00033\_850\_reduced\_\*.png Image files of co-added reductions
- s20141024\_00033\_850\_reduced.sdf.FIT FITS file containing sources of emission within map

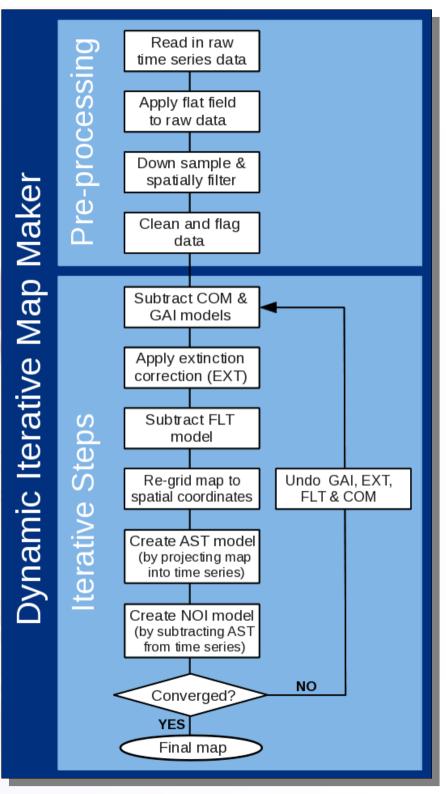
## **Dynamic Iterative Map-Maker**

- Invoked via SMURF makemap command or ORAC-DR
  - Initialization: Performs all pre-processing steps to clean data (concatenation, flat-fielding, down-sampling for scan speed & desired pixel size, initial cleaning & flagging).
     "Chunking" may also be performed for larger datasets
  - Iteration: Solves for multiple signal components using iterative algorithm
  - Final Map: Bins resulting time-series data to produce final science map
- Different recipes (see later) can be used to optimize results for different types of observations
  - Dimmconfig: Dynamic Iterative Map-Maker Configuration file. Specifies what map maker should do


# Map-Maker Iteration

b(t) = f \* [ e(t) a(t) + n(t) ]

b(t) = bolometer signal
f = responsivity / DAC constant
e(t) = time varying atmospheric extinction
a(t) = astronomical signal
n(t) = noise


#### Procedure

- Divide b(t) by f (fixed quantity)
- Remove most of n(t) with common-mode subtraction
- Divide by e(t) (noisy measurement from WVM)
- Remove remainder of low-frequency noise in n(t) with high-pass filter
- Regrid what is left over (a(t) + ~ white noise) to estimate map & remove back-projected signal from time streams
- Astronomical sources cause ringing, so check for convergence & iterate again as necessary



## Map-Maker Models

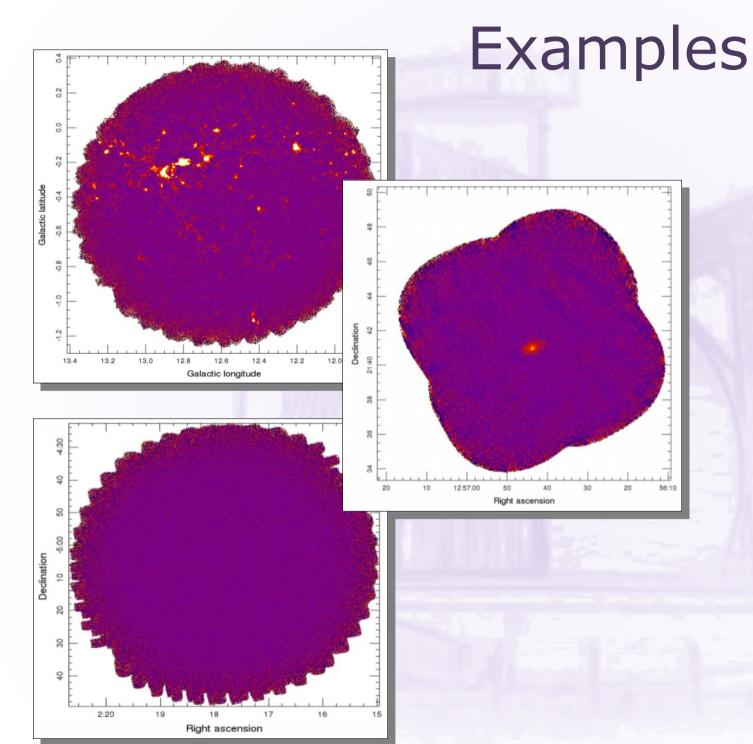
- **COM:** Common-mode signal
- GAI: Gains that scale each bolometer to commonmode
- **EXT:** Extinction correction
- FLT: Filter that removes low frequencies
- AST: Astronomical signal
- NOI: Residual noise




## Map-Maker – Standard Recipes (I)

#### • **REDUCE\_SCAN** – Usual configuration file: *dimmconfig\_jsa\_generic.lis*

- Uses configuration file *dimmconfig\_jsa\_generic.lis* for *makemap*, **unless source is identified as calibrator**. After all observations have been processed, data are co-added & calibrated in mJy / beam using the default FCF. Noise & NEFD properties for co-add are calculated & written to log files (*log.noise* & *log.nefd* respectively). Finally, *Cupid* task *findclumps* run using *FellWalker* (source finder algorithm) to create source catalogue
- For calibrators, *dimmconfig\_bright\_compact.lis* is used & FCFs derived from map
- REDUCE\_SCAN\_EXTENDED\_SOURCES Configuration file: dimmconfig\_bright\_extended.lis
  - For processing extended sources. Multiple observations are co-added & output map is calibrated in units of mJy / arcsec<sup>2</sup>. Also executes source finder routine; results written as FITS catalogue (with file extension .FIT) which can be read as local catalogue into *Gaia*


## Map-Maker – Standard Recipes (II)

- **REDUCE\_SCAN\_FAINT\_POINT\_SOURCES** Configuration file: *dimmconfig\_blank\_field.lis* 
  - For processing maps containing faint compact sources. Resultant map calibrated in mJy / beam. Output map further processed with matched filter, & S / N taken to enhance point sources. A map is written out at each step. Also performs source finder routine; results are written as FITS catalogue (with file extension .FIT) which can be read as local catalogue into *Gaia*
- REDUCE\_SCAN\_ISOLATED\_SOURCE Configuration file: dimmconfig\_bright\_compact.lis
  - Used for processing calibrator data. Can also be used for any map of a single bright, isolated source at tracking position. Reduction constrains map to zero beyond radius of 1 arcmin from source centre. Note: Assumes presence of a central source



## **ORAC-DR** Customization

- Possible to re-run reduction with different recipe from default originally specified in *Observing Tool* 
  - Useful if (e.g.) original recipe proves unsuitable
  - Simply append new recipe name when running ORAC-DR, e.g.
- % oracdr -loop file -files <list\_of\_files> REDUCE\_SCAN\_EXTENDED\_SOURCES
- Also possible to modify the parameters used by data reduction recipe using *recpars* (recipe parameters) file
  - Simple, plain-text file, allows (e.g.) specification of different map pixel size, dimmconfig file to be used. Invoked with *-recpars* option:
  - % oracdr -loop file -files <list\_of\_files> -recpars <recpars\_file>
    - Can be provided to EAO by PIs for customizing nightly reductions, if needed
    - If customizing, calibrations should be carefully checked!



Upper: Crowded Galactic Plane Field (JPS)

Middle: Nearby Galaxy (NGLS)

Lower: Cosmological Field (CLS)

## Additional Help

- Chapin et al. 2013, MNRAS, 430, 2545 (for Map-Maker)
- Dempsey et al. 2013, MNRAS 430, 2534 (for Calibration)
- http://www.eaobservatory.org/jcmt/instrumentation/contin uum/scuba-2/data-reduction/
  - Contains links to quick data reduction guide, SCUBA-2 DR Cookbook, Starlink download site & CADC archive
- http://www.eaobservatory.org/jcmt/instrumentation/contin uum/scuba-2/
  - Summary of instrument characteristics, sensitivity, etc.
     Also, details on POL-2 polarimetry
- Starlink document SUN/265: SCUBA-2 mosaics with PICARD
- Helpdesk link: help@eaobservatory.org
- Can e-mail designated Friend of Project (if you have one)

## SCUBA-2 Data Reduction Tutorials

- Requirements
  - Computer with 2015B Starlink installed
  - Tutorial Dataset (Size ~650 MB)
    - Short observation of HII region complex G34.3+0.2
       Often used as JCMT pointing source
    - Available from website or USB stick
    - From public calibration project M12AEC05
    - scuba2\_00068\_20120501T164451 in JCMT Archive at CADC
    - 850  $\mu m$  dataset only, but same procedures should work for 450  $\mu m$  datasets

http://www.eaobservatory.org/jcmt/science/reductionanalysis-tutorials/