JCMT Transient Survey: How do stars gain their mass?

Gregory J. Herczeg (沈雷歌) Kavli Institute for Astronomy and Astrophysics, Peking University

いいいのである

Team of collaborators

00.0'

'00.0''

'00.0'

'00.0"

'00.0''

Coordinators

Gregory Herczeg (PI; PKU/China) Doug Johnstone (co-PI; NRC/Canada) Yuri Aikawa (Tsukuba/Japan) Geoff Bower (ASIAA/Taiwan) Vivien Chen (NTU/Taiwan) Jennifer Hatchell (Exeter/UK) Jeong-Eun Lee (KHU/Korea)

Students (hopefully more soon) Steve Mairs (Victoria) James Lane (Victoria) Hyunju Yoo (Kyung-Hee University)

65 members (3 JPN, 10 UK, 9 CA, 13 CN, 4 EAO, 14 KR, 17 TW)

'00.0" '00.0" $30^m 00.00^s$ 30.00^{s} 30.00 $29^{m}00.00^{s}$ $28^{m}00.00^{s}$ $3^{h}27^{m}30.00^{s}$ RA (J2000) And the JCMT team who deal with our scheduling headaches to make these observations possible

NGC 1333

Core and initial mass function

Spectral Energy Distribution

Luminosity Problem (Kenyon et al. 1990; Dunham et al. 2010)

Episodic bursts of accretion (Kenyon et al. 1990; Dunham, Evans, et al. 2009)

Time dependence needed; episodic accretion is likely (but not only) solution (e.g., Offner & McKee; see review by Hartmann, Herczeg, & Calvet 2016).

Evidence for episodic accretion

- Outbursts on more evolved protostars (FUors, EXors)
- Repeated jet shocks
- Chemical signatures of past epochs of high luminosity (e.g., Kim +2011; Jorgensen+2013)
- Models of disk instabilities

Jet shocks of HH 111 (Reipurth 1989; Hartigan et al. 2011)

Models from Dunham & Vorobyov (2012)

Fuor and Exor outbursts

(adapted from Kospal+2011)

Observed protostellar variability (Safron, Fischer, et al. 2015)

Embedded source identified in mid-IR Spitzer; Strong sub-mm emission post-outburst

Program description

- 150 total hours spread over 8 fields of 30 arcmin
 - Perseus (2), Oph (1), Orion (3),
 Serpens (2)
 - Roughly monthly monitoring
 - Previous GBS epoch
- 182 Class o/I protostars, 132 flat-spectrum srcs, 670 disks

Levels of accretion variability for MRI+GI instabilities (Bae+2014, green) and GI (Vorobyov & Basu 2010, red)

First results/calibration (Mairs, Lane, Johnstone, et al.)

NGC 1333 1.0 '00.0''00.0'0.8 0 '00.0''00.0'1.2 '00.0'1.3 eak Ratio (I/I $_m$) 00.0'1.0 '00.0' $\overline{29^m}00.00^s$ $28^{m}00.00^{s}$ $3^{h}27^{m}30.00^{s}$ $30^m 00.00^s$ 30.00^{s} 30.00^{s} 0.8 RA (12000) No obvious variability yet,

but still improving methods and applying to fainter sources

Future of JCMT Transient Survey

- Program is running well on 8 regions rich in protostars
- No obvious variability yet, but still improving methods and applying to fainter sources
- Complementary science: disks, filaments, VeLLOs
 - 2.5 times deeper than SCUBA2
 Gould Belt Survey
- Chemistry, physics modelers

