An Introduction to JCMT Heterodyne Data Reduction

Jan Wouterloot

East Asian Observatory / JCMT

JCMT Users Meeting 2016, Mitaka

JCMT Heterodyne Instruments:

- RxA3(m) Single pixel receiver 230 GHz
- HARP 16 pixel 345 GHz array receiver
- ACSIS multi-channel digital spectrometer

How to reduce the raw data obtained from CADC:

- \cdot Observing modes
- · Data files
- Pipeline reduction
- · Recipes
- Inspecting the results with GAIA and SPLAT

HETERODYNE OBSERVING MODES

Stare (also called grid) - single position integration:1 pixel (RxA3)16 pixels (HARP) receptors H00 - H15

Jiggle-map (mostly used for HARP):

- moves secondary mirror to fill in the 30" spacing between HARP receptors to make a 2'x2' map.
- Two main spacings: HARP4 4x4 jiggle, undersampled. 7.25" pixels HARP5 – 5x5 jiggle, oversampled, 6" pixels

blue crosses = HARP receptors red lines = pixels in the resultant map grey dots = the HARP4 jiggle pattern \bigcirc = the pointing centre Raster:

• Scan or 'on-the-fly' technique.

HARP: array rotated at 14.04 deg to scan direction, with 7.3" pixels often repeated with 90 deg rotation to create 'basket-weave' maps

ACSIS spectrometer options:

- 250 MHz bandwidth; spectral resolution 0.0305 MHz
- 1000 MHz bandwidth; spectral resolution 0.488 MHz
- 1 4 subbands (RxA3)
- 1 2 subbands (HARP) (for 2 subbands resolution 0.061/0.977 MHz)
 - e.g. for simultaneous observations of C¹⁸O and ¹³CO

for 420 MHz (2x250) and 1800 MHz (2x1000) modes the two subbands have to be merged in the reduction

Example: G34.3 integrated intensity images

CRL2688 ACSIS examples (HARP)

250 MHz (0.0305 MHz)

1000 MHz (0.488 MHz)

420 MHz (0.061 MHz)

1800 MHz (0.977 MHz)

G34.3 2x250 MHz (0.061 MHz) ¹³CO(3-2)+C¹⁸O(3-2)

Filenames

One subband: a20140201_00006_01_0001.sdf

Two subbands: a20140201_00006_01_0001.sdf a20140201_00006_02_0001.sdf

Large maps: a20140201_00006_01_0001.sdf a20140201_00006_01_0002.sdf etc

a (ACSIS) UT-date Scan number Subband number File number

Easiest is to make a text file myfiles.list with a list of file names to be reduced.

Files are cubes with dimensions Velocity/Receptor/Time, viewable with GAIA.

How to reduce

Quick, using SMURF: > smurf > makecube in=^myfiles.list out=fileout.sdf autogrid (results in a raw cube with default pixels, no processing) Further reduction with KAPPA commands (and/or via GAIA is possible, but not easy)

Better use

ORAC-DR pipeline

ORAC-DR uses recipes describing what to do with the data.

Type of recipe depends on the kind of spectra expected in the source.

REDUCE_SCIENCE (default = REDUCE_SCIENCE_GRADIENT) REDUCE_SCIENCE_NARROWLINE REDUCE_SCIENCE_BROADLINE REDUCE_SCIENCE_GRADIENT REDUCE_SCIENCE_LINEFOREST REDUCE_SCIENCE_CONTINUUM REDUCE_SCIENCE_STANDARD REDUCE_SCIENCE_FSW (more listed in Sun260)

Default recipe for observation written to FITS header via JCMTOT: >kappa >fitslist a20140201_00006_01_0001.sdf | grep ORAC > RECIPE = 'REDUCE SCIENCE' / ORAC-DR recipe

Examples of typical spectra for broadline, narrowline, continuum, lineforest recipes Narrowline: linewidth < 8 km/s Gradient: 8 km/s < linewidth < 40 km/s Broadline: linewidth > 40 km/s (but those limits are not well-defined)

Recipe	Description of emission	Baseline method	
Narrowline	One or more narrow lines are expected across the band. Select this recipe if the expected lines are less than about 8 km/s wide.	Smoothing: Spatial = 5x5 pixels Frequency = 10 channels	
Broadline	This recipe is designed for wide lines that extend over a large fraction of the band. The line is typically too weak to see in a single observation so a pre-determined baseline window and linear baselines are used.	Uses the outer 10% of each end of the spectra to fit a first-order polynomial.	
Gradient	Typically one moderately wide line is expected, for which the center velocity varies significantly across the field. The expected lines should be wider than about 8 km/s and probably not wider than 20% of the available bandwidth.	Smoothing: Spatial = 3x3 pixels Frequency = 25 channels	
Lineforest	A forest of lines is expected across the band. Optionally separate moments map for each line are created.	Smoothing: Spatial = none Frequency = 10 channels	

Example:

REDUCE_SCIENCE_NARROWLINE – what is it doing – see Sun260:

This recipe is used for advanced narrow-line ACSIS data processing.

- · Creates a spatial cube from the raw time series data.
- Working on the raw time series data, it subtracts a median time-series signal, thresholds the data,
- Trims the ends of the frequency range to remove high-noise regions.
- Receptors with non-linear baselines and spectra affected by transient high-frequency noise may be rejected.
- After the time-series manipulation has been done to every member of the current group, every member is run through MAKECUBE to create a group spatial cube.
- This cube then has its baseline removed through a smoothing process, and moments maps are created.
- A baseline mask formed from the group cube is run through UNMAKECUBE to form baseline masks for the input time-series data, which are then baselined.
- The baselined time-series data are then run through MAKECUBE to create observation cubes, from which moments maps are created.

(at the moment the description of the broadline recipe is incomplete)

The pipeline

- oracdr_acsis
- oracdr -help
- setenv ORAC_DATA_IN (pwd)
- oracdr -file myfiles.lst
- (will use recipe from header)

(continuation)

This shows the workflow for the narrowline and gradient recipes.

Calculates T_{sys} and RMS for all receptors and compares to quality assurance Parameters set by the pipeline.

Creating baseline region mask. Smoothing cube ga20080903_22_1_reduced001 with [3,3,25] tophat. ga20080903_22_1_blmask001: baseline region mask created.

Creating moments maps for ga20080903_22_1_reduced001. Smoothing cube with [3,3,25] tophat. Masking out lines using ga20080903_22_1_blmask001. Median RMS in smoothed observation is 0.143.

Clump finding in ga20080903_22_1_reduced001 Finding clumps higher than 3.0-sigma using clumpfind. Masking non-clump data. Collapsing to form temporary integ map. Finding clumps higher than 4.0-sigma using clumpfind. Masking non-clump data. Collapsing to form temporary iwc map.

Created integ map in ga20080903_22_1_integ. ga20080903_22_1_integ to ga20080903_22_1_rimg: Tagged as representative.

Creating new object for KAPVIEW

ga20080903_22_1_rimg to ga20080903_22_1_rimg_64.png: Created graphic. Adding EXIF header to ga20080903_22_1_rimg_64.png. ga20080903_22_1_rimg to ga20080903_22_1_rimg_256.png: Created graphic. ga20080903_22_1_rimg to ga20080903_22_1_rimg_1024.png: Created graphic. Spectrum created from pixel co-ordinates (5,2) created in ga20080903_22_1_sp001. ga20080903_22_1_sp001 to ga20080903_22_1_rsp: Tagged as representative.

ga20080903_22_1_rsp to ga20080903_22_1_rsp_64.png: Created graphic. Adding EXIF header to ga20080903_22_1_rsp_64.png. ga20080903_22_1_rsp to ga20080903_22_1_rsp_256.png: Created graphic. ga20080903_22_1_rsp to ga20080903_22_1_rsp_1024.png: Created graphic.

Created iwc map in ga20080903_22_1_iwc.

Baselines, finds emission regions using clumpfind, and creates moments maps, velocity maps, and integrated intensity images.

Create noise maps

Creating noise map for ga20080903_22_1_reduced001. Using variance array in ga20080903_22_1_reduced001 to create temporary noise map. Created noise map in ga20080903_22_1_noise. Checking RMS spatial uniformity for ga20080903_22_1_noise. Using central 50% of map. minimum: 1.21 maximum: 2.56 mean: 1.65 Number of pixels used: 420 Number of bad pixels: Percentage bad: 0.00% Spatial RMS uniformity **DASSEC** for Telescope for ga20080903_22_1_noise. OA based on bad pixels in final map **DASSEC** for Telescope for 9a20080903 22 1 noise. Checking RMS uniformity for ga20080903_22_1_reduced001. Masking out lines using ga20080903_22_1_blmask001. RMS map from lower 10% of frequency range created in ga20080903_22_1_rmslo. RMS map from upper 10% of frequency range created in ga20080903_22_1_rmshi. Median RMS in lower 10%: 1.9199K Median RMS in upper 10%: 1.4993K Percentage difference: 28.06% Frequency RMS uniformity **DASSEC** for Telescope for current map.

Produces noise map and applies any QA rms tests.

List of output files (default output)

.oracdr_*.log	ORAC-DR log file
a20140103_00043_01_cube001.sdf	Raw (unbaselined) cube
a20140103_00043_01_integ.sdf	Integrated intensity image
a20140103_00043_01_rimg*.sdf	Representative image (same as integ file), used to form rimg PNG
a20140103_00043_01_sp001.sdf	Spectrum taken from position of peak intensity in the integ file
a20140103_00043_01_rsp*.sdf	Representative spectrum (same as sp001), used to form rsp PNG
a20140103_00043_01_iwc.sdf	Intensity weighted co-ordinate image
a20140103_00043_01_noise.sdf	Noise map
a20140103_00043_01_reduced001.sdf	Final baselined trimmed cube of the 1st (of n) file.
a20140103_00043_01_rmslo.sdf	Low-frequency noise
a20140103_00043_01_rmshi.sdf	High-frequency noise
log.qa	Quality assurance reports
log.noisestats	Noise statistics for each observation and group

log.group ga20140103_43_1_reduced001.sdf ga20140103_43_1_integ.sdf

etc

The files contibuting to each group Combined baselined cube Combined integrated intensity image

(ORAC_KEEP=1 more intermediate files)

Options for non-standard Quality Assurance or Recipes Setting Quality Assurance parameters:

Make file myqa.par with e.g.

[default] GOODRECEP = 10TSYSBAD = 600RMSVAR_MAP = 0.05

Use option oracdr -cal qaparams=myqa.par

Changing Recipe parameters:

Make file myparams.ini with e.g.

[REDUCE_SCIENCE_NARROWLINE] TRIM_PERCENTAGE = 3.5 REBIN = 5 PIXEL_SCALE = 8

Use option oracdr -recpars myparams.ini

(or – copy recipe to your workspace and edit it; use setenv ORAC_RECIPE_DIR)

	sections of a cube (1) \equiv \odot \odot \otimes				
<u>F</u> ile <u>V</u> iew <u>O</u> ption	ns <u>C</u> oords/StdOfRest <u>G</u> o <u>H</u> elp				
Input cube: ga20070705	_34_1_reduced001.sdf Choose file				
Axis:	three : spec 📃				
Index of plane:	-1 4				
Coordinate of plane:	48.26314				
Coordinate type:	Radio velocity (LSB) (km/s)				
Increment:	1 8				
Show coordinate label:					
Spectrum Animation C	Collapse Chanmap Rebin Filter Baseline				
— Spectrum controls: —					
Spectrum extraction:	Re-extract				
Show limits on plot:	v				
Lower index:	- 174				
Coordinate of plane:	121.5022				
Upper index:	124				
Coordinate of plane:	-4.655264				
Fix data range:	-				
	0				
	1				
Point tracking:					
Define region:	0001401-				
Combination method:	Mean 💻				
Reference:	Set Clear				
SPLAT-VO:	Send: replace Send: add				
	Close				
i					

GAIA

Inspect cube or image

Select NDF in container file (1)									
NDF list for file: /export/data/janw/janw/ORACTEST/workshop/scans/GaiaTempCubeSection1.sdf									
number	name	naxis1	naxis2	hasvar	hasqual	\square			
1		20	20	false	false				
2	.MORE.SMURF.EXP_TIME	20	20	false	false	:			
3	.MORE.SMURF.EFF_TIME	20	20	false	false				
4	. MORE . SMURF . TSYS	20	20	false	false	$\overline{\nabla}$			
Data	Variance Error Q	uality	Display a	s one ima	age 🗌 🗆 Show NDF imag	es Close			
i Table: Click to select NDF, double-click to display image									

GAIA animation similarly one can look for wings/outflows in position-velocity plots.

Radio velocity (LSB): 39.79608 km/s

G34.3 12CO(3-2)

SPLAT – spectrum sent from GAIA via 'Send replace'.

Where to find help

Quick Guide (heterodyne): http://www.eaobservatory.org/jcmt/instrumentation/heterodyne/data-reduction/reducing-acsis-data/

Heterodyne DR Cookbook (Starlink Cookbook SC/20) http://starlink.eao.hawaii.edu/devdocs/sc20.htx/sc20.html

ORAC-DR – Submm heterodyne pipeline data reducion User Guide (Starlink User Note 260) http://starlink.eao.hawaii.edu/devdocs/sun260.htx/sun260.html

Ask your Friend of Project

Send a mail to helpdesk@eaobservatory.org