Determining the systematic errors in fits of dust thermal emission The role of laboratory data in upcoming models

Lapo Fanciullo, Ciska Kemper, Peter Scicluna Hilo, Apr 10th 2018

Tuesday 10 April 18

Intro: what is dust?

"Soot and sand in space" – A. P. Jones

CARBON

- Amorphous?
- Graphite?
- Hydrogenated?

SILICATES

- Mostly amorphous (98%)
- Mineralogy?
- Embedded metals?

ICES

- Inside dark clouds
- Rich chemistry

Intro: what is dust?

"Soot and sand in space" – A. P. Jones

CARBON

- Amorphous?
- Graphite?
- Hydrogenated?

SILICATES

- Mostly amorphous (98%)
- Mineralogy?
- Embedded metals?

ICES

- Inside dark clouds
- Rich chemistry

Molecules (PAH?) < 1 nm

"Big" grains ≳ 100 nm

Aggregates

Intro: what is dust?

"Soot and sand in space" – A. P. Jones

CARBON

- Amorphous?
- Graphite?
- Hydrogenated?

SILICATES

- Mostly amorphous (98%)
- Mineralogy?
- Embedded metals?

ICES

- Inside dark clouds
- Rich chemistry

Intro: observing dust

5

EXTINCTION

$I_{cm^{2}/H}^{2}$ σ_{ext} $I_{cm^{2}/H}^{2}$ σ_{ext} I_{l} σ_{ext} I_{l} σ_{ext} I_{l} σ_{ext} $\sigma_$

EMISSION

MPIA - Markus Nielbock

Intro: observing dust

6

EXTINCTION

EMISSION

MPIA - Markus Nielbock

Intro: SED fitting

NGC 185 (De Looze+16)

Intro: SED fitting

NGC 185 (De Looze+16)

Intro: SED fitting

Optical properties: lab vs observations

- FAYA 1000.0 Amorphous fayalite (Mennella et al. '98) 100.0 $\kappa_{\lambda} (cm^2 g^- 1)$ 10.0 E 24 K 1.0 100 K 160 K 200 K 295 K 0.1 1000 100 λ (μ m)
- Interpolation on T
- Interpolation on λ
 - 2D interpolation

- Interpolation on T
- Interpolation on λ
 - 2D interpolation
- Smooth (if necessary)
- Correct for artifacts

Grain shape and aggregates

Köhler et al. 2012

Lab results vs. observations

Lab results vs. (synthetic) observations

Bias estimation (Work by Peter Scicluna)

Conclusions

- Dust mass determination depends on choice of opacity
- Large differences between lab-derived and observation-derived opacities
 - Power law (single- β) model inadequate
 - Dependence on T
- Fits of synthetic photometry
 Mass overestimated by up to ~10x
 To solve Whete ff
- To solve: What effect of shape distribution? Cogulation?

Thank you for your attention!

Extra Material

K_{λ} : Demyk et al. 2017

Tuesday 10 April 18

Lab results vs. observations

Lab results vs. (synthetic) observations

Work by Peter Scicluna, z = I

