Below the Surface of Embedded Protostars envelope structure and kinematics

Yao-Lun Yang

The University of Texas at Austin EAO seminar September 20, 2018

Agata Karska Tyler Bourke Ewine van Dishoeck DIGIT and COPS teams

Collaborators

Neal Evans Lars Kristensen Joel Green Joseph Mottram Jeong-Eun Lee Odysseus Dionatos Jes Jørgensen Michael Dunham Aaron Smith Gregory Herczeg John Tobin Susan Terebey

Image credit: NAOJ

30 Doradus

NASA, ESA, D. Lennon and E. Sabbi (ESA/STScI)+

Taurus Molecular Cloud

Optical: Iñaki Lizaso Far-IR: ESA/Herschel/PACS, SPIRE/ Gould Belt survey Key Programme/ Palmeirim et al. 2013

NGC 1333

R. A. Gutermuth et al. JPL/NASA (Spitzer)

Characterize the youngest protostars with Herschel

UT Austin | Yao-Lun Yang

Molecular outflows

Jets / shocks

Protostars

Far-IR emission of CO and water tracing outflows and shocks

UT Austin | Yao-Lun Yang

Resolved emission unveils the origins of CO and water

The origin of CO emission Proposed by Mottram+2014

DIGIT COPS to solve the cases

Dust, Ice, and Gas In Time (PI: Neal Evans) Herschel-PACS: 50-200 µm

- 30 embedded protostars (Green+2013)
- 24 Herbig Ae/Be
- 6 T Tauri stars

Reduced data and line fitting results released to *Herschel* Science Archive and with Yang+2018

An inventory of molecular and atomic emission lines

Two distinct populations of rotational temperatures

UT Austin | Yao-Lun Yang

Other molecules (e.g. H₂) may become the main coolant at high temperature

Spatial extent of the CO emission

Azimuthal flux distribution to quantify bipolarity

The extent of CO emission decreases at higher-J

How does the dense core collapse?

UT Austin | Yao-Lun Yang

Dunham+2014 (PPVI review)

Accretion variability

Initial Mass Function

 $\Delta N / \Delta \log M$ bin: mass per objects of Number

The evolution of angular momentum during the collapse

Model the structure of protostellar envelope

- sound speed rotational speed
- age

- opening angle density profile inclination
- disk size
- flare power
- disk mass
- scale height

Model the structure of protostellar envelope

The "smoking gun" evidence of the collapsing envelope Kinematics is the key!

UT Austin | Yao-Lun Yang

Leung & Brown 1977

A problem awaits ALMA to solve

 T_{MB} (K)

Pineda+2014

The "smoking gun" evidence of the collapsing envelope

Observe the redshifted absorption against the continuum

Probe the infalling envelope of BHR 71

A case study with BHR 71 - an isolated embedded protostar

ALMA Cycle 4 Band 7 observation (PI: Y.-L. Yang) with a beam of 0.39"×0.27"

Where are the molecules and can we see them? Take HCO⁺ as an example Freeze-out - high density and low temperature

HCO+ depletion at the inner region

IRAS 15398-3359

Gaseous water destroys HCO+

Modified from Jørgensen+2013

Model the HCO⁺ profile due to the infall

Dust model constrained by *Herschel* spectra (Yang+2017)

density, temperature, velocity

The kinematics of the rotating infalling envelope

Model the HCO+ profile due to the infall

Outflow cavities

UT Austin | Yao-Lun Yang

HCO⁺ prefers a younger envelope

Model the HCO⁺ profile due to the infall

Velocity and abundance at the freeze-out zone is critical

There are more molecules tracing different physical environment

Complex organic molecules (COMs) emission traces the kinematics of the inner 100 AU

COMs trace a rotating ring

Methanol indeed can form a ring

$0.3 \quad 0.0 \quad -0.3$ $\Delta \alpha (arcsec)$

UT Austin | Yao-Lun Yang

60⁻s W 40⁻-wead Ar 0 20⁻L -20⁻L

$0.3 \quad 0.0 \quad -0.3$ $\Delta \alpha (arcsec)$

Lee+2018

Sources with different L_{bol} have a similar chemistry

A formation journey starts from the ices on dust grains

UT Austin | Yao-Lun Yang

Herbst & van Dishoeck 2009

Summary

The 3D radiative transfer model suggests a younger envelope, smaller infall velocity, for the HCO+ profile.

We detect 13 species of COMs toward BHR 71, and two of them show the kinematics of a rotating ring.

The CO ladder traces the the shocked gas and entrained gas from high-J to low-J transitions.

