Structure of a protobinary system: an asymmetric circumbinary disk and spiral arms

Tomoaki Matsumoto (Hosei univ, Princeton Uiniv) K. Saigo (NAOJ), S. Takakuwa (Kagoshima Univ; ASIAA)

Topics on protobinary L1551 NE

- ALMA Cycle 0 + numerical simulations + synthetic observations
 - Takakuwa et al. 2014, ApJ, 796, 1
 - Takakuwa, Shigehisa; Saito, Masao; Saigo, Kazuya; Matsumoto, T omoaki; Lim, Jeremy; Hanawa, Tomoyuki; Ho, Paul T. P.
- ALMA Cycle 2 + numerical simulations + synthetic observations
 - Takakuwa et al. 2017, ApJ, 837, 86
 - Takakuwa, Shigehisa; Saigo, Kazuya; Matsumoto, Tomoaki; Saito, Masao; Lim, Jeremy; Hanawa, Tomoyuki; Yen, Hsi-Wei; Ho, Paul T. P.
- Numerical simulatins: understanding gas dynamics
 - Matsumoto, Saigo, Takakuwa 2018, submitted to ApJ

Core members

Tomoaki Matsumoto (Hosei U. / Princeton U.)

Numerical simulations

Shigehisa Takakuwa (Kagoshima U. / ASIAA)

Radio observations

Kazuya Saigo (NAOJ)

Synthetic observations

Evolution of multiple frequency of low mass stars

Scenario of binary/multiple star formation

L1551 NE: Class I Protobinary stars

Observed asymmetry in CBDs

L1551 NE (Takakuwa+ 17) ALMA Cycle-2

UY Aur (Tang+ 14, Hioki+ 07) SUBARU H-band

Questions: origin of spiral arms and asymmetry

Summary of L1551 NE

- Class I protobinary
 - Main accretion phase, outflows from primary
- d = 140 pc
- M1 = 0.68 M_sun, M2 = 0.13 M_sun, q = 0.19
- Separation = 145 au (3D), 70 au (proected)
- Radius of CBD ~ 300 au
- Mass of CBD = 0.009 0.076 M_sun
- Mass of CSD = 0.005 0.043 M_sun (primary)
- Mass of CSD = 0.0019 0.015 M_sun (secondary)
- Rotation period = 1.9 x 10³ years

Numerical Method

SFUMATO AMR code

Super Computer ATERUI I/II

- Category: XC-B+
- Parallel computing

 1024 cores (large-B+ queue), 20 jobs/model, 160 hours (~ a week)
 288 cores (bulk-B+ queue), 70 jobs/model, 560 hours (23 days)
 ~ 20 models in total

Surface density distribution (fiducial model)

Gas flow along spiral arms

Temporal average to see long-lived structures

Temporal averages (80-100 rev)

Mass flux, $\Sigma \; v_R$

Positive (red) : outflow Negative (blue): infall Rotation excess from Kepler rotation c.f., swing-by of of a satelitte

Gravitational torque -> fast/slow rotation (super/sub-Kepler) -> outflow/infall Gravity of stars -> infall onto stars

Summary of gas flow in rotating frame

Gas flow is due to gravitational torque from binary stars. Detection of the flow is a direct evidence of grav. torque.

Residual from Kepler rotation (C18O)

Observation (moment 1)

Keplerian rotation (model)

Residual

ALMA Cycle 0 Takakuwa+ 14

Residual from Kepler rotation (C18O)

Comparison btw ALMA and simulation

Takakuwa+17

Moment 1 maps of obs and sim

ALMA Cycle 2 Takakuwa+ 17

S-shaped moment 1 map is reflected by gravitational torque.

Asymmetry of CBD

Non-axisymmetric pattern 1 rev. when binary stars 4 rev (commensurability)

Vortex in CBD

Time average btw 80-100 rev in the rotating frame with Ω_p (rotation with pattern)

Blue cont: specific angular mom. Red cont: surface density Black : stream lines White: centrifugal radius with Ω_p

- Comparison between ALMA observations with high-resolution simulations is a powerful tool.
- We found that an evidence of gravitational torque acting on the CBD of L1551NE in gas motion.
 - inflow / outflow, super-sub Kepler rotation.
- Asymmetry in circumbinary disks are explained by the numerical simulation. It is caused by resonance between Kepler rotation and gravitational torque.
- Spiral arms and asymmetry are natural outcome of interaction between binary stars and CBD.

A Statistical Study of Massive Cluster-forming Clumps

Shimoikura et al. 2018, ApJ, 855, 45

Shimoikura, Tomomi; Dobashi, Kazu hito; Nakamura, Fumitaka; Matsumo to, Tomoaki; Hirota, Tomoya

29

<- from Twitter @eao_jcmt

Scenario of cluster formation

Shimoikura+18

Types of clumps and clusters; 15 regions and 24 clumps

Observations: NRO 45m telescope

Shimoikura+18

Chemical evolution and types of clusters

fractional abundance of molecules wrt H2