The relation between dense molecular clouds cores and very young stellar clusters

Hongjun Ma @JCMT 2/27/2019

Outline

- Background
 - 1) Clusters forming
 - 2) Environment of clusters forming
 - 3) Method of cluster forming
 - 4) Star formation law
- Next steps
- Data

Background Clusters forming

Gies DR. 1987

BINARY FREQUENCY

Type*	Cluster/Association	Field	Runaway							
A. Visual Multiplicity										
VB VMS	20 37	5 4	0 0							
Total	42%	21%	0%							
OPT S	4 75	4 30	0 16							
Total	58%	79%	100%							

In the Milky Way Galaxy, for the global clustering of spectral Otype stars (Parker & Goodwin 2007), of which ~70% reside in young clusters or associations (Gies 1987) and ~50% of the remaining field population are directly identified as runaways (de Wit et al. 2005).

Massive Stars Massive Clusters Low- Mass Stars (after Lada 1987, Andre, Ward-Tompson & Barsony, 1993) Massive Molecular Prestellar Core(s?) **Prestellar Core Aggregates** ? >10⁶ M Permunologie di Submillimeter **Hot Multi-Cores?** Massive Submillimeter Protostar **Aggregates** ? å Class few Ultra-Compact HII Infrared Protostar Massive Ultra-Dense Region (UCHII) HII Regions (UDHII) 100,000 yr few x100.000 vr few x100,000 yr Class I g a \$0.1 few **Young Super OB** Star T Tauri star (w/acccretion remnants?) Starcluster 1,000,000 yr <1 Myr 1-3 Myr Class II **OB** star Super Starclusters **Evolved** T Tauri -> Globular Clusters? 10,000,000 yr 3 Myr - 13 Gyr Class III

Method of cluster forming : fragmentation or accretion

Simulations of accretion in Mass_{spp} clusters containing 1000 stars result in mass spectra broadly consistent with these analytic estimates. The high-mass stars are confirmed to accumulate the majority of their mass in a stellar-dominated potential. Lastly, competitive accretion in clusters naturally results in mass segregation as the accretion rates are higher near the cluster centre during the gas-dominated

The mass accreted during the stellar-dominated phase, Mass_{SDP}, plotted against total stellar mass

phase.

Monthly Notices of the Royal Astronomical Society, Volume 324, Issue 3, 21 June 2001, Pages 573–579, https://doi.org/10.1046/j. 1365-8711.2001.04311.x

UNIVERSITY PRESS

The content of this slide may be subject to copyright: please see the slide notes for details.

Environments of cluster forming

Motte, et al.

2018

The extreme characteristics of ridges and hubs, in terms of density and kinematics, could lead to atypical star-formation activity.

Figure 8

HIGH-MASS PROTOSTELLAR PHASE ($\sim 3 \times 10^5$ years) 4 IR-quiet high-mass protostar Protostellar accretion Low-mass stellar embrvo Outflov Inflows IR-bright high-mass protostar Tim liah-mass stellar embrvo HII REGION PHASE (~10⁵-10⁶ years) **HII region** onization, expansion

High-mass stars form in molecular complexes hosting massive clouds and often OB clusters. Parsecscale massive clumps/clouds called ridges and hubs are the preferred, if not the only, sites for high-mass star formation. Their infall velocity and density structure suggest ridges/ hubs undergo a global but controlled collapse.

high-mass star formation develops simultaneously and in tight link with the formation of massive clouds and massive clusters

Motte, et al. 2018

star formation law

Our sample

- Wu et al. 2010 (82 molecular cloudy cores massive star forming regions)
- Kharchenko et al. (2005) & Piskunov et al.
 (2008) more than 3000 Galactic open clusters
- Camargo et al. (2011, 2015)—1089 embedded stellar clusters

About 40 molecular cloudy cores with young stellar clusters around

Sample: GMCs with young stellar clusters around

CSO HCN(3-2)

S231 pink is Bolocam 1.1 mm;

Cyan is Camargo et al. (2011, 2015) clusters

JCMT CO(3-2) contour map.

Background is WISE 3.4 micron band image.

The sample with JCMT CO and Scuba-2 archive data available

# Name	RA	Dec	equ	Scanline	line2	project_1	850mic	project_2
W44	18:53:18.5	01:14:56.2	J2000	HCN(4-3	0	0	scuba-2	0
S106	20:27:25.7	37:22:51.8	J2000	HCN(4-3)	0	0	scuba-2	0
W3(OH)	02:27:04.7	61:52:25.5	J2000	13CO(3-2)	C180(3-2)	M07BU16	scuba-2	S14BC01
NGC7538	23:13:44.85	61:26:50.67	J2000	13CO(3-2)	C180(3-2)	M07BU16,	scuba-2	M16BP006
S158	23:13:44.9	61:26:50.6	J2000	13CO(3-2)	C180(3-2)	M07BU16	scuba-2	M15BI059
S158A	23:13:45.4	61:28:11.7	J2000	13CO(3-2)	C180(3-2)	M08AU19	scuba-2	M15BI059
NGC7538-IRS9	23:14:01.7	61:27:19.9	J2000	13CO(3-2)	C180(3-2)	407BU16	scuba-2	M15BI059
S157	23:16:04.4	60:01:40.6	J2000	13CO(3-2)	C180(3-2)	M10BU08	scuba-2	M13AU03
W75N	20:38:36.9	42:37:37.5	J2000	13CO(3-2	C180(3-2)	M08AU19	scuba-2	M11BEC30
W75(OH)	20:39:01.01	42:22:49.9	J2000	13CO(3-2)	C180(3-2)	M08AU19	scuba-2	M11BEC30
S255	06:12:53.7	17:59:22.1	J2000	13CO(3-2)	C180(3-2)	M08BU18	scuba-2	M11BD02
CEP_A	22:56:18.1	62:01:46.2	J2000	13CO(3-2)	C180(3-2)	108BU18	scuba-2	M13AU03
W51	19:23:04.16	14:36:25.90	J2000	13CO(3-2)	C180(3-2)	M08AU06	scuba-2	M16AP046
W51W	19:23:11.0	14:26:38.1	J2000	13CO(3-2)	C180(3-2)	M08AU06	scuba-2	M16AP046
W51M	19:23:43.9	14:30:29.4	J2000	13CO(3-2)	C180(3-2)	M08AU06	scuba-2	M16AP046
w43North	18:47:36	-01:57:00	J2000	13CO(3-2)	C180(3-2)	M10AC06	scuba-2	S13AU02
W43_Main3	18:47:47.2	-01:54:35.1	J2000	13CO(3-2)	C180(3-2)	M10AC06	scuba-2	MJLSJ02
w43South	18:46:00	-02:42:00	J2000	13CO(3-2)	C180(3-2)	M10AC06	scuba-2	MJLSJ02
S231	05:39:12.9	35:45:54	J2000	13CO(3-2)	C180(3-2)	M11BN07	scuba-2	MJLSY02
W3(2)	02:25:40.6	62:05:51.1	J2000	13CO(3-2)	C180(3-2)	M07BH45B	scuba-2	M13BC07
RCW142	17:50:14.7	-28:54:31.6	J2000	13CO(3-2)	C180(3-2)	M15AI18	scuba-2	M12AJ01
W28A2(1)	18:00:30.4	-24:03:58.5	J2000	13CO(3-2)	C180(3-2)	M09AU13	scuba-2	M12AJ01
W33cont	18:14:13.7	-17:55:25.2	J2000	13CO(3-2)	C180(3-2)	M10BD02	scuba-2	MJLSJ02

Range of velocity of CO (-20 _ 0) Cep A_13co(-20_0)_850

Back ground grey map: ¹³CO (3-2) observed with HARP; contour map are 850 micron emission observed with SCUBA -2

850 micron emission contour level: 49.5037, 26.5168, 3.52986, 0.5

850 micron emission contour level: 50.7693, 39.3769, 27.9845, 16.5921, 5.19972, 0.5

Next steps

Stellar clusters

- 1) to identify the new clusters with WISE data
- 2) check the age of all the clusters including the clusters published in literature

Molecular cloudy core

- 1) getting the Mass of GMC cores with ¹³CO (3-2) data
- 2) getting physical parameters of GMC cores with other dense gas tracers data
- Comparing the Initial Mass function (MF) of clusters with the MF of GMC cores
- 1) getting the mass function of GMC cores with simulation method
- 2) try to get more high resolved data to get the Mass function of GMC cores
- 3) try to get the Initial MF of clusters with optical and IR data.

• Checking SFL with star clusters

1) getting the luminosity of CO (3-2) of the molecular cloudy cores

2) identify the distance of clusters with gaia data to remove the front and back clusters

3) getting the mass of clusters to check the SFL

G28.86+0.07

Range of velocity (96 _ 110)

G28.86+0.07_13co_850

The contour level: 1.74429, 4.27113, 6.79797, 9.32482, 12

The contour level: 2, 4.27113, 9.32482,12

G48.61+0.02

Range of velocity (6 _ 26)

G48.61+0.02_13co_850

The contour level: 14, 10, 7, 4, 2.5

The contour level: 14, 10, 7, 4, 2.7132

G59.78+0.06

Range of velocity (18_28)

G59.78+0.06_13co_850

G59.78+0.06_13co(18_28)_850

The contour level: 7, 5, 3, 1.5, 1

The contour level: 12.4829, 9. 42406, 6.38524, 3.34642, 1

NGC7538

The contour level: 39.729, 29.8928, 20.0588, 10.2204, 5, 3, 1

NGC7538-IRS9

Range of velocity (-70 _ -42)

NGC7538-IRS9_13co_850

NGC7538_IRS9_13co(-70_-42)_850

The contour level: 39.729, 29.8928, 20.0588, 10.2204, 5, 3, 1

The contour level: 39.729, 29.8928, 20.0588, 10.2204, 7, 4, 1

The contour level: 14.479, 10.233, 5.98703, 1.74102

RCW142_13co(8_30)_850

Range of velocity (8 _ 30)

The contour level: 15, 7.8, 5.3, 2

Right ascension The contour level: 10, 9.61619, 6.15754, 2.69889, 4,1.5

S158A

Range of velocity (-68 _ -40)

S158 A_13co(-68_-40)_850

S158 A_13co_850

The contour level: 53.5301, 41.4752, 29.4203, 17.3654, 5.31045, 2, 1

27

26

Range of velocity (-48 _ -30)

2:25

24

23

The contour level: 45, 20, 15, 9, 3, 1.7

W3OH

W3(OH)_13co(-42_-56)_850

Range of velocity (-42 _ 56)

Dialat according

W28a

W28A2(1)_13co_850

W28A2(1)_13co(-5_25)_850

The contour level: 92.5437, 69.025, 45.5062, 21.9875, 10, 5

The contour level: 10, 9.61619, 6.15754, 2.69889, 4,1.5

6.96819 04.0055 W33A_13co(25_50)_850

W33A

W33A_13co_850

The contour level: 76.3796, 50.0402, 41.6829, 24.3255, 6.96819, 3

The contour level: 30, 24.3255, 20, 12, 6.96819, 3

W33cont_13co(8_20)_850

W33cont[®]

W33cont_13co_850

Range of velocity (8 _ 20)

The contour level: 76.3796, 50.0402, 41.6829, 24.3255, 6.96819, 2

W33cont

W33cont_13co(25_48)_850

W33cont_13co(50_60)_850

Range of velocity (50 _ 60)

The contour level: 76.3796, 50.0402, 41.6829, 24.3255, 6.96819, 2

W42_13co(74_82)_850

W42_13co(43_48)_850

W42

The contour level: 51.3875, 39.9231, 28.4586, 16.9941, 5.52966, 3, 1

Right ascension

W44_13co(48_65)_850

The contour level: 214.07, 165.58, 117.05, 68.5399, 20.0299, 10, 5, 2

Declination

The contour level: 77.9738, 59.723, 41.4721, 23.2213, 4.97042, 3, 1.5

W75N

W75N_13co(-5_2)_850

Range of velocity (-5 _ 2)

4.97042
 23.2213
 41.4721
 59.723
 77.9738
 3
 1.5

W75N

Range of velocity (2 _ 18)

W75(OH)_13co_850

Right ascension

W75(OH)_13co(15_20)_850

W75(OH)_13co(14_22)_850.sdf W750H Range of velocity (14_22) 32 30 28 26 24 22 42:20 18 16 000 4 42

Right ascension

20:39:00

38:40

20

The contou level: 18375.9 14169.8 5757.68 1551.8, 100