Large-Format Kinetic Inductance Detector Arrays for Sub-Millimeter Astronomy and Polarimetry Jason ("Jay") Austermann

NIST-Boulder / University of Colorado-Boulder

EAO Futures

Nanjing, China May 2019

Large-Format Kinetic Inductance Detector Arrays for Sub-Millimeter Astronomy and Polarimetry Jason ("Jay") Austermann

NIST-Boulder / University of Colorado-Boulder

Focal Plane Complexity

State-of-the-art: TES-based

Deployed TES ARRAY (~ 2000 Detectors)

- 1000's wire bonds
- 1000's SQUID amplifiers
- hundreds of additional SC components
- dozens of cables

Focal Plane Complexity

TES

Deployed TES ARRAY (~ 2000 Detectors)

- 1000's wire bonds
- 1000's SQUID amplifiers
- hundreds of additional SC components
- dozens of cables

MKID

The Ideal: Integrated readout

- e.g. Toltec MKID (4000 detectors)
 - 14 wire bonds
 - 14 Coax cables
 - 14 LNAs

Toltec 1.1 mm

Advanced ACTPol (MF)

(Roughly the same scale)

(4K LNAs not shown)

NIST-QSG Technology Supported Science: Applicable areas of our (sub-)millimeter wave technology

Cosmology

Dark Energy, Inflation, Dark Matter, General Relativity,
 Gravitational Waves, Neutrino physics

Astrophysics

• Star Formation, High Redshift Galaxies, Large scale structure, Planetary Disks

Other Applications & Possibilities

- Novel Cryogenic Technologies
- Security, QC, Communications, and more
- Medical Imaging, Spectroscopy, Atmospheric Science
- Majority of group also works on calorimetry and metrology

NIST-Boulder Quantum Sensors Group

NIST Technology Family

Recent/Past Projects: ACTPol, SPTpol, ABS, SCUBA-2, (many more for readout)

Ongoing/future: BLAST-TNG, Advanced ACTPol, Mustang-2, SPIDER, Litebird, ToITEC, Simons

Observatory, CMB-S4, ALI-CMB, and many more for readout (e.g. SPT-3G, BICEP/KECK, etc)

Multiple technology development grants for various detectors, readout, and mm-wave optical components

Detectors

Arrays of 1,000's of detectors

Coupling Optics

High-Precision Low-Systematics

Cold Readout

Amplifiers, Resonators, cryoelectronics for multiplexing

Fabrication

18,000 square feet class 100 clean room

Reliability, Uniformity and Performance

BLAST-TNG

- High-Altitude Balloon telescope,
 2.5-meter primary
- ~ 3,500 polarization sensitive KIDs
- Roach2 Multiplexed Readout (ASU)
 - ~1 MHz channel spacing, 500 MHz bandwidth
- Bath Temperature: 275mK
- Expected Flight: Dec 2019
- 3 bands (micron): 250 350 500
- Beamsize (arcsec): 25 35 50

Penn NIST

• Strength: Sub-mm polarimetry in hard to access wave bands

CARDIFF

UNIVERSITY

NORTHWESTER

TOLTEC

- 50-meter diameter Large Millimeter Telescope (LMT)
- ~ 7,000 polarization sensitive KIDs
- Roach2 Multiplexed Readout (ASU)
 - ~1 MHz channel spacing, 500 MHz bandwidth
- Bath Temperature: 100 mK
- Expected first light: Aug 2019
- 3 bands (micron): 1100 1400 2000
- Beamsize (arcsec): **5.0 6.3 9.5**

INADE

Optica y Electrónica

to Nacional de Astrofísic

UMASS

STANFORI

 Strength: high mm-wave mapping speeds w/ high angular resolution

CARDIFF

UNIVERSITY

NORTHWESTERN

Wide ranging science applications

2000AU

23h 59m 59

High-redshift star-forming galaxies

Extragalactic

AzTEC/LMT observation (color) of SZ cluster

Order of magnitude frequency coverage

CSO atmospheric model, 0.5 PMV

Order of magnitude frequency coverage

CSO atmospheric model, 0.5 PMV

Optical Coupling Scheme drives Pixel Design

• Feedhorn Coupled Waveguide

- Bare Antenna Arrays
- Hemispherical Lenslets

Metamaterial Lenslets

POLARBEAR & SPT Collaborations

CLASS 40 GHz

Array

Caltech/JPL BICEP/KECK/SP IDER

NIST/CU/Cardiff Early Development

Optical Coupling Scheme drives Pixel Design

Feedhorn Coupled Waveguide

Bare Antenna Arrays

Hemispherical Lenslets

Metamaterial Lenslets

Why Feedhorns? Why Silicon?

- High focal plane efficiency
- CTE matched to Si detector wafer
- Planar interface
- Frequency and pitch scalable
- High precision and uniformity (lithography)
- Natural high-pass and RF shield (waveguide)
- Low Systematics
 - Symmetric beams
 - Low cross section to stray light
 - No AR coating required

NIST Silicon Feedhorn Arrays

Typical NIST Detector Stack

Silicon Platelet Stack

Build almost any profile

Feedhorn Arrays

1.1 mm horn platelet

Full 1.1 mm Feedhorn Array

Feedhorn Arrays

1.1mm horn measurement vs simulation

Full 1.1 mm Feedhorn Array

Array multiplexing

Array multiplexing

Arrays: densely populated networks

BLAST-TNG

Toltec 150 mm S21
 1870 resonances 500 MHz $\mathbb{S}_{2^{1}}$ **Readout Frequency**

Resonator-to-pixel mapping

Physical map?

Problem 1 Errors in frequency placement can lead to an ambiguous mapping between physical detector and resonator

Detector Array Image: Contract of the state of the state

Use array of uniquely addressable cold LEDs to identify correspondence between resonator frequency and physical position

Problem 2 Frequency collisions can lead to a loss in usable yield

Y. Wang, *et al.* JAP (2017)

In collaboration with Y Wang, L.F Wei, et al. Southwest Jiaotong University, Chengdu, China

LED Trimmer/Mapper

Use array of uniquely addressable cold LEDs to identify correspondence between resonator frequency and physical position

In collaboration with Southwest Jiaotong University, Chengdu, China

Liu, *et al.* ApL (2017)

LED Trimmer/Mapper

In

with

Jiaotong

China

Use array of uniquely addressable cold LEDs to identify correspondence between resonator frequency and physical position

Focal Plane Complexity

TES

Deployed TES ARRAY (~ 2000 Detectors)

- 1000's wire bonds
- 1000's SQUID amplifiers
- hundreds of additional SC components
- dozens of cables

MKID

The Ideal: Integrated readout

- e.g. Toltec MKID (4000 detectors)
 - 14 wire bonds
 - 14 Coax cables
 - 14 LNAs

Toltec 1.1 mm

(Roughly the same scale)

Measured Optical Performance

Summary

- Large monolithic KID-based Polarimeter arrays on 150 mm diameter substrates
 - Usable area ~ 130mm diameter
- High Multiplexing factors (500+ per octave) w/ few interconnects and cold readout components
- LED mapper + MLA modification could allow higher multiplexing factors AND nearly 100% yield
- Excellent optical performance
- Matched well with silicon-platelet feedhorn technology
- Multiple on-sky verifications coming in the next 6--8 months (ToITEC & BLAST)