Dust and Molecular Gas in Early-Type Galaxies

Collaborators: Nicola Agius, David Glass (PhD student), Tim Davis, George Bendo, Kate Rowlands, Sebastien Viaene, Cristina Popescu + H-ATLAS, HeViCS & GAMA consortia.

EAO, Hilo May 2019

Outline of talk

- Motivation For studying gas and dust in ETGs
- **Observations** Past, Herschel Space Observatory
- Kinematics SAMI IFU observations
- Environment Comparison of GAMA and Virgo
- **ALMA** follow-up of 5 dusty ETGs
- *KiDS* data and future
- Summary

Motivation for studying gas and dust in ETGs

- Smoking gun of past galaxy evolution through ISM content, kinematics and structure (e.g. *Davis et al. 2011*)
- Environmental effects on ISM (e.g. Young et al. 2011; Agius et al. 2015)
- Survivability of dust and dust heating mechanisms
- Gas-to-dust ratios in different galaxy types (cosmological inferences, e.g. *Camps et al. 2016*)
- ETGs represent endpoints of galaxy evolution? (e.g. *Eales et al. 2018*)

Multiwaveband data Elliptical NGC4150

MOLECULAR GAS: CO (radio)

Crockett et al. Young et al.

Gas and dust origins in ETGs?

- Stellar mass loss?
- Major or minor mergers?
- Cold gas accretion?

Examples of minor mergers (van der Voort et al. 2018)

ISM variety in ETGs – e.g. (M_{HI}/M_{*})

(Young et al. 2018)

Molecular gas in ETGs

• Previous relations (ATLAS^{3D}, IRAM, CARMA):

(Young et al. 2011)

- ~22% detections, $Log(M(H_2)/M_{\odot})=7.1$ to 9.3
- Lack of M(H₂) versus M_{gal} relations.
- More CO detected in fast rotating ETGs
- Most CO gas rich found in rare environments

(Davis et al. 2011)

- Ionized gas follows molecular (CO) gas distribution
- <u>Kinematic misalignments</u> of CO (& ion) versus stars, particularly in slow rotators:
- Misalignments indicate external origin
- Simulations: Misaligned gas disks can survive ~2Gyr (*van de Voort et al. 2015*)

Dust in ETGs

- Earlier results (ATLAS^{3D} (*abs*), Scuba, ISO (*em*), Spitzer):
 - 16% dust features in optical images (Krajnovic et al. 2011)
 - Lack of far IR versus optical trend (Temi et al. 2007)
 - Dust detected in 24%(Es), 62%(S0s) in HRS, 62 ETGs (Smith et al. 2012)
- Sample from early H-ATLAS/GAMA

(Agius et al. 2013/15):

- Dust detected in 29% of 771 ETGs
- Plus Herschel, Virgo cluster survey (HeViCS)

Large surveys

GAMA: Galaxy and Mass Assembly Survey (Multi-waveband)

http://www.gama-survey.org/

H-ATLAS: Herschel Astrophysical Terahertz Large Area Survey (Sub-mm)

Detects dust emission

http://www.h-atlas.org/

Good for observing complete samples, e.g. E/SO galaxies

ETG Study (Agius, Sansom et al. 2015)

- Out to **z<0.06**, mostly field/group environments
- (E, SO, Sa) from GAMA *morphologies* (SDSS images; *Kelvin et al. 2014*)
- H-ATLAS/GAMA 3 equatorial field areas
- Removed: Contaminants, lenses, AGN, flat, small galaxies, 20 spiral
- 771 ETGs *complete* down to **M**_r = −**17.4 mag** (≈SMC)
- 220 submm detections out of 771 ETGs (29%)
- Investigate dust (M_d, T) versus:
 - Stellar Mass (M*)
 - Star formation (UV, optical colours, Hα)
 - Types
 - Environment

What trends did we find?...

Downsizing in ETGs

Herschel-ATLAS results (Agius et al. 2013)

Kinematics of some ETGs (Bassett et al. 2017)

- 49 out of 220 submm detected ETGs observed with SAMI optical IFU
- Kinematically classified

•
$$\lambda_R = \frac{\sum\limits_{k=1}^n F_k R_k |V_k|}{\sum\limits_{k=1}^n F_k R_k \sqrt{V_k^2 + \sigma_k^2}}$$
 (*n* spaxels)

 Only 4 are dispersiondominated, dusty ETGs (σ>110 km/s; σ>V_c)

Kinematics of some ETGs

- 4 dispersion dominated, dusty ETGs, out of 49 ETGs observed with SAMI
- Measured stars and ionized gas
- Star-to-gas space and kinematic misalignments, suggestive of merger.

(Bassett et al. 2017)

Survival of dust in ETGs

- 49 representative H-ATLAS ETGs mostly rotation dominated (*Bassett et al. 2017*)
- Fast rotators have less hot, X-ray gas (e.g. *Sarzi et al. 2013*)
- Dispersion dominated ETGs (σ >150 km/s), with X-ray halos expect dust destruction in τ_{dust} < 0.02Gyr
- Dust is more likely to survive longer in fast rotating ETGs

 \Rightarrow Seen in HRS and H-ATLAS samples

Environment densities in sub-mm

detected and un-detected ETGs (Agius et al. 2013)

Virgo Supercluster region (1 ly =0.307 parsecs)

GAMA and Virgo Cluster ETGs

(Agius et al. 2015)

Spectral Energy Distributions + Fitting

 \Box SFR, M_{*}, M_d etc.

Comparison with Virgo cluster (Agius et al. 2015)

Specific dustto-star mass (Log(M_d/M_{*}) versus Environmental density (Σ_{gal})

Comparison with Virgo Cluster

Lower Dust Masses and Star Formation Rates in ETGs in Virgo Cluster (Agius et al. 2015)

Comparison of GAMA with Virgo cluster

(Agius et al. 2015)

H-ATLAS ETGs: 5 targets in yellow observed with ALMA

5 dusty ETGs (Morphologies from GAMA catalogue)

Resolving dust and gas

ALMA (almaobservatory.org)

- Interferometry \Rightarrow data cube (*x*, *y*, *vel*)
- Dust emission from continuum
- Molecular gas from line transitions in molecules, ¹²CO(2-1) transition at 230 GHz (1.3mm) for low density gas
- Data processing: ALMA calibrations + cleaning + PB corrections (CASA) + moments and spectra (IDL, python).

ALMA continuum detections

- No detections in GAMA64646 and GAMA272990
- Unresolved, faint source at centre of GAMA177186, plus brighter submm source ~4" NW (probably contributed to H-ATLAS fluxes).
- Two serendipitous point sources at ~13" N and W of GAMA622305
- Unresolved source at centre of GAMA622429 could be AGN.

Dust

• Lack of extended ALMA continuum: LAS and sensitivity limitations (if dust is extended)

Results from ALMA (Sansom et al. 2018) E.g. ¹²CO(2-1) in GAMA 272990 - an Elliptical galaxy

GAMA272990 (E) 100 DEC offset (") Velocity (km -2 -100 2 kpc 2 kpc -6 -2 0 2 6 -4 4 -6 -4 -2 0 2 4 RA offset (") KiDS optical image Moment 1

Moment 0 (r-band, 1'x1') (¹²CO flux) (¹²CO velocity)

Molecular gas: Flux to Luminosity and Mass conversions

 Measure line flux as SAv (Jansky kms⁻¹) from <u>spectra</u>:

•
$$L_{CO} = (c^2/2k)D_L^2 \{S \Delta v\} \upsilon_{rest}^{-2}(1+z)^{-1}$$

(K km s⁻¹ pc²) (Mpc²) (Jy kms⁻¹) (GHz⁻²)

- Conversion from L_{CO(2-1)} to L_{CO(1-0)} (for M-L relation of Solomon et al 1987)
 E.g. Young et al. 2011, 1:1 if same excitation T
- Conversion from CO to H_2 mass (α_{CO} or X_{CO}) Metal dependant, e.g. *Remy-Ruyer et al. 2014*
- Conversion from M_{H_2} to M_{Total} (for Helium, metals)

$$M_{Total} = 1.37 \alpha_{CO} \frac{L_{CO(1-0)}}{L_{CO(2-1)}} L_{CO(2-1)}$$

Molecular gas-to-dust mass ratios etc.

(Sansom et al. 2018)

ETG GAMA ID	$\begin{array}{c} \rm MAGPHYS \\ \rm M_{*} \\ \rm (M_{\odot}) \end{array}$	$\begin{array}{c} \text{MAGPHYS} \\ \text{M}_d \\ \text{(M}_{\odot}) \end{array}$	±	$\begin{array}{c} \rm MAGPHYS\\ \rm SFR\\ \rm (M_{\odot}/yr) \end{array}$	ALMA M _{mol} (M _☉)	±	$rac{\mathrm{M}_{mol}}{\mathrm{M}_{*}}$	$\frac{\mathrm{M}_{mol}}{\mathrm{M}_{d}}$	±	(M_{mol}/SFR) t_{depl} (yr)
64646 177186 272990 622305 622429	7.80E+10 1.68E+10 3.34E+10 4.27E+10 2.97E+10	3.3E+7 1.9E+7: 2.3E+7 3.9E+7 4.2E+7	4.2E+6 4.0E+6 3.3E+6 6.8E+6 3.4E+6	1.066 < - 0.608 < 0.490 4.245 <	$\begin{array}{r} 3.2E+9\\ 3.5E+8\\ 2.4E+9\\ 6.6E+7:\\ 7.1E+9\end{array}$	>2.4E+8 4.8E+7 >1.6E+8 1.3E+7 >4.4E+8	0.0410 - 0.0719 0.0015: 0.2391	98 18: 106 2: 168	14 5 17 1 17	3.0E+9 - 3.9E+9 1.3E+8: 1.7E+9

M_{mol} > MWG

Results from ALMA (Sansom et al. 2018) Overlays by David Glass (PT PhD student at UCLan)

KiDS optical images (greyscale); ¹²CO Moment O maps (false colour); Continuum (green contours) (17"x17")

 $M_{mol} \sim \text{few} \times 10^9 M_{\odot} \text{ in 3 ETGs}$

Offset molecular gas in GAMA177186

Moment 0 map around systemic v_{gal} shows noise, except for offset source. Line emission – but which line? If not CO(2-1) then maybe background galaxy at z>2

Future: Kinematic analysis of ALMA CO

GAMA 64646

Software: KinMS (Davis+13)

Manual tuning of parameters

Empirical arc tan model of exp disk

Examples of information in PV diagrams

X-structure Typical of a bar (disc+ring) (e.g. van de Voort et al. 2018)

Ridges Typical of spirals (e.g. *Koda et al. 2002*) Max and min Typical of rings (e.g. *Alatalo et al. 2013*)

Future: GAMA/KiDS/GalaxyZoo

• KiDS – Kilo Degree Survey with VST (*de Jong et al. 2013*)

KiDS improved depth and resolution over SDSS:

- GAMA_morphs in equatorial fields Composite g,r colour KiDS images created by Kelvin et al. (LJMU) Decision tree for GZ GAMA-KiDS Into Galaxy Zoo (Jan 2017), completed (Feb 2018), ~50000 galaxies At least 40 attempts per galaxy Results reduced and cleaned (Bamford et al.), ongoing bias corrections
- Can we use GZ GAMA-KiDS results to distinguish ETGs (E and SO)?

Sharper Images - Different Classifications

Probabilistic classification (e.g. *Hart et al. 16; Casteels et al. 2013*)

Summary

- H-ATLAS revealed 220 (29%) dusty ETGs in GAMA equatorial fields
 - Lower mass galaxies more affected (downsizing in ETGs)
 - Mostly green valley galaxies (see also Kelvin et al. 2018; Eales et al. 2018)
 - Dust mass correlates poorly with stellar mass
 - In rarer environments
- 49 observed with SAMI
 - Mostly fast rotators
 - Predict a lack of x-ray halos hence dust can survive
- Virgo cluster ETGs less dusty
- ALMA follow-up of 5 dusty ETGs from H-ATLAS/GAMA
 - None with extended dust (LAS & sensitivity limits)
 - One offset continuum contamination in G177186
 - 3 with massive molecular gas reservoirs ($M_{Mol} \sim \text{few} \times 10^9 \text{ M}_{\odot}$)
 - Next: KinMS analysis of CO
- GAMA/KiDS/GalaxyZoo morphological possibilities

Thank you

