Activities of Shanghai VLBI correlator

Wu Jiang, Zhi-Qiang Shen, Ru-Sen Lu and correlator group at Shanghai Astronomical Observatory (SHAO)

2019/05/20

Correlator is the very important part of VLBI technology.

DiFX correlator is developed by Adam Deller/Walter Brisken (2007) and maintained by a global correlator team. Widely and formally used at EHT, MPIfR, LBA, VLBA, RadioAstro, IVS etc. for both astrophysics and geodesy.

DSHAO's DiFX correlator platform

3 Mark6 units (2019)

Build in Dec. 2014

Deployment

Software

DiFX2.2/2.3/2.4.1/2.5.2, HOPS3.8/3.10/3.12/3.18/3.20 etc.

Hardware

Head nodes	2 head nodes , 20 CPU, each head node manages 10 computing nodes
Computing nodes	400 cores , 20 computing nodes, 20 CPU each node, Intel Xeon E5-2660 v3 2.6GHz, 64GB RAM.
Networks	56Gb infiniband network for cluster and RAID, 10Gb/1Gb Ethernet for cluster, RAID and Mark5.
Storage system	432 /1052 TB, RAID 6 and parallel file system.
Mark5/6	7 units, 1 Mark5A, 2 Mark5B, 1Mark5B+, 3Mark6

Achieve a speed of 10 stations, 1Gbps/station. More stations allowable at a relative low correlation speed.

De-VLBI network conditions

Almost a real time connection.

Country	Institutes	Network B/W	To/From Shanghai
Germany	Bonn MPRiFR	900Mb/s	800Mb/s
Japan	Japan NICT		1Gb/s
Japan	Japan GSI		1Gb/s
South Korea	uth Korea NGII		800Mb/s
Italy	y IRA		800Mb/s
South Africa	South Africa Hartebeesthoek		$550 \mathrm{Mb/s}$
Australia	Australia University of Tasmania		800Mb/s
New Zealand	New Zealand Auckland University of Technology		800Mb/s
Brazil	Brazil IPNE		200Mb/s
Netherlands	etherlands JIVE		1Gb+/s
Russia	Russia IAA		500Mb/s
USA	USA Haystack		600Mb/s
Malaysia	University of Malaya	100Mb/s	90Mb/s

- 1. Flexible: Support Mark4, Mark5B, VDIF format as input, provide Mark4 and FITS-IDI outputs.
- 2. Pulsar binning/gating, zoom maser line, multiphase center correlation.
- 3. e-connected.

CRoutine operations

- 1. Astrophysics, CVN observations, east Asia VLBI, joint observations.
- 2. **Geodesy**, serve as an IVS correlator since 2015. domestic geodetic observations and joint VLBI astrometry programs.

3. Other test experiments, data exchange buffer etc.

EAVN

Observing Band: C(6.7GHz), K, Q Recording rate: 1Gbps 2Gbps(future) Stations(common): CVN(3), KVN(3), VERA(4) Baseline Length: ~200km-5500km Science work groups: AGN Astrometry Evolved star Star formation

Early fringe tests for EAVN. EAVN open-use started in 2018!

DRoutine operations

	CVN	Joint	IVS
2015	10 Continuum, Pulsar, Geodesy	10 EAVN(FT), Astrometry	10 AOV, APSG, CRF
2016	20 T6 Rx test, Continuum, Geodesy	8 EAVN(FT), FT, Astrometry	26 AOV, APSG, AUA, AUG, CRDS, CRF, R&D
2017	Astrometry, Geodesy, Pulsar	EAVN, FT	31 AOV, APSG, AUA, CRDS, CRF, R&D

Scientific Program

Scientific Program

Ecliptic plane survey

Among 3321 sources (red+green), 556 sources detected (green). (Shu F C, session2-3)

Hybrid recording and correlation

ShKbKmUr 16IF*32MHz*2bit = 2Gbps Kv(Sejong) 16IF*32MHz*1bit = 1Gbps Ho(Hobart26) 16IF*16MHz*2bit = 1Gbps

GC magnetar study

In beam (2.4 arcsec) phase-referencing imaging of magnetar

(mas) 20

A 43G detection with EAVN, multi epoch observations in total on SgrA*/Magnetar with EAVN in 2017/2018/2019 EHT campaign.

EA 1mm VLBI

The **first EA 1mm VLBI** test observations (2019.03.17-19)! The data are collecting now.

The correlator at SHAO definitely can server for both test and scientific EA sub-mm VLBI observations! Any requirements for the correlator?

For future sub-mm VLBI

More stations, higher frequency, new technology... Science driven programs... Connect to the outside region...

Thank you for your attention! 谢谢!

