(Dense) Molecular Gas & Star Formation in Galaxies

Xue-Jian JIANG (蒋雪健)

Purple Mountain Observatory

Danish Technical University

Outline

- Motivations: dense gas as direct tracer of star-forming gas
- JCMT large program (MALATANG)
- Other examples &Future demands

DIFFERENT PHASES OF ISM

Molecular gas drives cosmic star formation

Molecular gas drives cosmic star formation

Motivation: ISM & Star-formation

tracing dense gas — the direct fuel of SF

	Transition	$n_{ m crit}$	$E_J/k_{ m B}$
$^{13}CO J = 1 - 0$		$[cm^{-3}]$	[K]
	CO(1-0)	4.4×10^2	5.53
	CO(2-1)	$3.6 imes 10^3$	16.60
Sand and the second	$\mathrm{CO}(3-2)$	$1.3 imes 10^4$	33.19
	CO(4-3)	3.0×10^{4}	55.32
	CO(5-4)	5.9×10^{4}	82.97
	CO(6-5)	1.0×10^{5}	116.16
SF -> photon -> dust reradiation	CO(7-6)	1.5×10^{5}	154.87
	HCN(1-0)	1.7×10^{5}	4.25
	HCN(2-1)	1.6×10^{6}	12.76
	HCN(3-2)	5.2×10^{6}	25.52
	HCN(4-3)	1.3×10^{7}	42.53
	$HCO^{+}(1-0)$	2.6×10^{4}	4.25
mid-infrared	$HCO^{+}(2-1)$	2.6×10^{5}	12.76
	$HCO^{+}(3-2)$	1.0×10^{6}	25.52
	$HCO^{+}(4-3)$	2.5×10^{6}	42.53
	CS(1-0)	8.3×10^{3}	2.35
	CS(2-1)	7.9×10^{4}	7.05
	CS(3-2)	3.0×10^{5}	14.11
	CS(4-4)	7.7×10^{5}	35.27
CS 2 L (high critical density)	CS(5-4)	1.8×10^{6}	49.37
CS Z=1 (Ilight Chucal density)	CS(6-5)	3.1×10^{6}	65.83
	CS(7-6)	4.9×10^{6}	65.83

Star Formation relations

Dense gas mass

QUESTIONS TO ADDRESS

- Different environments: nuclear, arm, disk?
- Connection between local clouds and galaxies?
- Consistency and differences between tracers?

JCMT LARGE PROGRAM: MALATANG

Mapping the Dense moLecular gAs in the sTrongest stAr-formiNg Galaxies/

- HCN 4-3 and HCO⁺ 4-3 survey toward 22 IR-bright galaxies
- 390 hours (Nov. 2015 Jul. 2017)

Significance:

- Resolved dense gas SF relations
- Intermediate (sub-kpc) scales/luminosities
- Radial distribution of dense gas and SF efficiency

PI: Yu Gao (CN), Thomas Greve (UK) & Zhiyu Zhang (Germany)
 co-I: Satoki Matsushita (Taiwan), Kotaro Kohno(Japan), Aeree Chung(South Korea), Christine Wilson (Canada), Qinghua Tan et al.

RESULTS (1) SF RELATION

- Inear correlations hold for all densities >10⁴ cm⁻³!
- Bridge the gap between extragalactic (galaxy-integrated) and Galactic (single clouds) observations

concentration

RESULTS (2): NGC 253

30

20

10

0

-10

-20

-30

30

20

10 -

0

-10

-20

-30

60

50

40

offset along minor axis (arcsec)

60

50

40

30

30

20

10

0

20

10

offset along minor axis (arcsec)

DENSE GAS IS CONCENTRATED

-20

-20

-10

-40

-50

-60

-10

offset along major axis (arcsec) Jiang et al. (to be submitted) offset along major axis (arcsec)

50

40

30

20

10

-20

-30

-40

-50

-60

60

RESULTS (3) NGC 253

relation to stellar feedback?

for different transitions, stellar feedback has different effect?

(Usero et al. 2015, Bigiel et al. 2016, Gallagher et al. 2018a)

similar discussion in the CMZ (Central Molecular Zone): Kauffmann et al. 2013, 2017; Kruijssen et al. 2014; Rathborne et al. 2015)

FOLLOW-UP PLAN

HCN & HCO+ (3–2), AND LARGER SAMPLE

- multi-J will better constraint
 SF properties
- new JCMT observations: M16AP028: 38 hrs; M19AP004: 50 hrs
 Scuba2 data (M16BP098)
- many available in archive _____
- ALMA archive can enlarge the sample to southern sky

Ν	Name	RA	DEC	HCN 3-2	HCO+ 3-2
		J2000	J2000	archive	archive
1	NGC 1808	$05 \ 07 \ 42.3$	$-37 \ 30 \ 47$	no	no
2	NGC 3521	$11 \ 05 \ 48.6$	-00 02 09	no	no
3	NGC 4631	$12 \ 42 \ 08.0$	$32 \ 32 \ 29$	no	no
4	NGC 4736	12 50 53.0	$41 \ 07 \ 14$	no	no
5	NGC 5457	$14 \ 03 \ 12.5$	$54 \ 20 \ 56$	no	no
6	M51	$13 \ 29 \ 52.7$	$47 \ 11 \ 43$	no	no
7	NGC 2146	$06\ 18\ 37.7$	$78\ 21\ 25$	yes	no
8	NGC 3628	$11 \ 20 \ 17.0$	$13 \ 35 \ 23$	yes	no
9	NGC 253	$00 \ 47 \ 33.1$	$-25 \ 17 \ 18$	yes	yes
10	NGC 660	$01 \ 43 \ 02.4$	$13 \ 38 \ 42$	yes	yes
11	NGC 891	$02 \ 22 \ 33.4$	$42 \ 20 \ 57$	yes	yes
12	Maffei 2	$02 \ 41 \ 55.0$	$59 \ 36 \ 15$	yes	yes
13	NGC 1068	$02 \ 42 \ 40.7$	-00 00 48	yes	yes
14	IC 342	$03 \ 46 \ 48.5$	68 05 47	yes	yes
15	NGC 2903	$09 \ 32 \ 10.1$	$21 \ 30 \ 03$	yes	yes
16	M82	09 55 52.7	$69 \ 40 \ 46$	yes	yes
17	NGC 3079	$10 \ 01 \ 57.8$	$55 \ 40 \ 47$	yes	yes
18	NGC 3627	$11 \ 20 \ 14.9$	12 59 30	yes	yes
19	Arp 299	$11\ 28\ 30.4$	$58 \ 34 \ 10$	yes	yes
20	M83	$13 \ 37 \ 00.9$	-29 51 56	yes	yes
21	NGC 6946	$20 \ 34 \ 52.3$	$60 \ 09 \ 14$	yes	yes

FOLLOW-UP POTENTIALS: CONNECT GALACTIC AND EXTRAGALACTIC STUDIES

the large FOV of JCMT and the high resolution of ALMA (or SMA) are great complement to each other

RESEARCH SUMMARY

- MALATANG focuses on sub-kpc scale
- Exploring the effect of stellar feedback.

DEMANDS (DREAMS)

EXAMPLES

- M51: EMPIRE (30m, Bigiel et al. 2016)
 89 GHz, 75h, RMS: ~15 mJy, 4'x6'
- NGC253: (MALATANG JCMT)
 354 GHz, 20 h, RMS: ~ 100 mJy, 2'x2' covered
- NGC253: ALMA (16 antennas)
 100 GHz,, 3-point and 7-point mosaic, 1.5' covered (Meier+ 2015, Leroy+ 2015)
- NGC1068 ALMA (18 27 antennas)
 2h, 11-field mosaic in band 7 and 1-point in band 9 (García-Burillo+ 2014, Viti+2014)
- ULIRGs (45 antennas)
 z=0.05 ~ 0.15 (HCN 3-2, 1 mJy, Imanishi et al. 2019)

HIGH SENSITIVITY AND RESOLUTION !

WIDE BAND !

wide band ! higher SNR,

higher efficiency

 many physical/chemical properties embedded isotopes, shocks, temperatures ... (Zhang et al. 2018, nature)

more accurate line ratios

similar upgrade for JCMT as the SMA?

DATA ARCHIVE

- data growing faster than community
- "data mining" more challenging
- need data center in China?

SUMMARY OF DREAMS

- Wide band (and stable baseline)
- high sensitivity (large dish)
- large FOV (heterodyne array)
- urgent need of fast archive access