

EAO Sub-mm Futures, May. 20-23, 2019

A Planar Integrated SIS Heterodyne Array for Wide FOV Observation

Wenlei Shan on behalf of the development team

Heterodyne Receivers With SIS Mixer

Combination of Large FoV and High Sensitivity

Very sensitive coherent detector: Superconductor -Insulator-Superconductor Tunnel Junction

SIS Mixer Fabrication

Superconducting Spectroscopic Array Receiver (SSAR) :Sideband Separation (2SB) SIS Mixers

Integration of the frontend

LO Distribution Concept Design

This approach eliminates the difficulty in machining waveguide structures, paves the road to a large amount of pixels.

Membrane-based Waveguide Probes

2mm Band Mixer Chip Layout

SEM image credit: Shohei Ezaki, NAOJ

The size of this chip is 13 mm x 10 mm x 0.4 mm.

Circuit diagram of the mixer chip

The mixer is configured as a balanced mixer.

Free-standing Membrane

(a)

(b)

The SEM image of the backshort piece for (a) signal waveguide probe and for (b) the LO waveguide probe. The membrane about the LO waveguide backshort is inventively cracked to show the clearance between the membrane and the metal block.

Demonstration of Performance (OMT)

Planar OMT

Polarization selectivity measurement

X-Polar level < -23 dB is achieved.

Balanced Mixing: Signal Selectivity

Balanced Mixer: Noise

The low-noise performance is approaching ALMA specification.

Balanced Mixing: A solution of LO power requirement

Balanced Mixer (50% LO usage)

Single-ended Mixer (1-5% of LO usage)

Freq. Range	LO Pw	Pw per Jun.	Jun per pixel	Max Num
140-220 GHz	3 mW	0.05 uW	8	7500
400-600 GHz	1.5 mW	0.36 uW	8	520
750-1000 GHz	0.25 mW	1 uW	8	31

Road Map of This Work

Sub-millimeter wavelength

For interferometers

Other Technical Challenges

- Wide FOV optics
- Low power-consumption and low-cost amplifiers
- Multiplexing of IF output (radio-over-fiber)
- Spectrometer technologies

Reduction of LNA power from 20 mA to 1 mA

The photograph of the GaAs LNA chip. Size is 1 $mm \times 2.4 mm$.

- Band: 2.5-4.5 GHz;
- Average noise temperature of 12 K;
- Gain > 20 dB; Dissipation of 1.2 mW.

Conclusion

New concept is proposed and verified for SIS multibeam receivers.

The goal of this work is to implement this technology to the future large single-dish mm-submm radio telescopes and inteferometers.

