EAO Submm Futures, Nanjing, China May 20-23, 2019

High-Sensitivity Superconducting Mixers and Detectors for THz Astronomy

Sheng-Cai Shi on behalf of DATE5 Team Purple Mountain Observatory, CAS Key Lab of Radio Astronomy, CAS

Background image credit: NRAO

Introduction

Fabrication & measurement of CFRP panel & a scaled antenna
Development of superconducting heterodyne receivers & detectors
Summary

Superconducting Mixers & Detectors for Mm/Submm/THz Astronomy

Superconducting Mixers & Detectors for Mm/Submm/THz Astronomy

Dome A in Antarctic

Road to Dome A in Antarctic

Chinese Antarctic Observatory at KunLun Station

Timeline & Status

- 2005/1/9, arriving at Dome A (21th CHINARE)
 - 2008/1, starting the site survey at Dome A
- 2009/1/27, constructing the Kun-Lun station (25th CHINARE)
- 2013/2, govermental announcement of 16 selected mega-science proposals for
 - 2012-2030, including Chinese Antarctic Observatory
 - 2013/7, CAS proposal for Chinese Antarctic Observatory
 - 2016/11/9, negotiation between CAS and SOA, with PI switched to SOA
 - 2017/8, SOA proposal for Chinese Antarctic Observatory
 - 2019/3~, proposal revising & re-submission by MONR

Terahertz and far-infrared windows opened at Dome a in Antarctica

Sheng-Caí SHI et al., Nature Astronomy 1, 0001 (2016)

Dome A in Antarctic

Unmanned Dome A FTS deployed to Dome A

In collaboration with CfA/ UNSW/NAOJ/NAOC/...

DATE5 Telescope & Instruments

Fabrication & Measurement of CFRP Panel

A new sandwiched prototype CFRP panel with lattice core

• Size:1m×0.6m

• Surface Density :15kg/m²

Auto-heating for anti-icing

Surface accuracy measurement of prototype panel at ambient temperature of 40 degrees and -40 degrees

A Scaled Antenna for DATE5

Major Specifications

- Aperture: 1.2m (CFRP Reflector)
- Surface: 20µm rms
- Pointing: 3 arcmin rms
- Tracking: 2 arcmi rms

Demonstrations on

- Holography
- Thermal control
- Slant-axis mount

Near-field Holography Measurements

- Near-field measurements on the scaled antenna
 - Primary-focus mode
 - Cassegrain-focus mode

Correction for various error sources

- Rotation-center displacement
- Beam self-rotation of the slant-axis
- Polarization mismatch
- Diffraction of the subreflector

50

0

-50

Surface error after consecutive settings

→ 20 µm

Surface Alignment Based on Antenna Gain Measurements

Proposed a new alignment technique based on antenna gain measurement
Tested on the scaled antenna, achieved accuracy of λ/100 @ 3mm

Potential application on DATE5 and other telescopes

Z. Lou et al., JATIS 5(2), 2019

A 0.85-THz Waveguide SIS Mixer

A 1.4-THz Quasi-optical HEB Mixer

THz Fourier Phase Grating

 $\Delta \phi(x) = \sum n = 1 \uparrow N = a \downarrow n \cos(n2\pi x)$

- Frequency: 450 μm
- 1x4 beams
- Unit size: 9.33 mm
- 5 x 5 units
- Fourier series: 5

Design

Manufactured FPG

Simulation & Measurements

Fourier Phase Grating for H450 of DATE5, with efficiency > 84%

A 5-GHz Bandwidth FFTS

A 350 μ m/0.85THz 32x32 AI MKIDs Array

1024 AI MKIDs on 3" Si Wafer

Detector	AI/TiN MKIDs
Format	32x32
Band	350 μm/850 GHz
NEP	1x10 ⁻¹⁶ W/Hz ^{0.5}

4. 522GHz 50k Single Al MKIDs

0.7mm

- Twin-slot antenna coupled
- CPW read-through line & resonators

Qc	50-1000k
Freq step	3 MHz
Freq range	4-7.069 GHz
Bath temp	300 mK

A 350 μ m/0.85THz 32x32 AI MKIDs Array

A 350µm/0.85THz 32x32 AI MKIDs Array

A 850μ m/0.35THz 8x8 Ti TES Array

Measured R-T, I-V, P-T and response tin

Superconducting Device Fabrication Lab

Measured R-T for the fabricated TiN/Al/Ti films

32x32 MKIDs & 8x8 TES

Summary

Dome A in Antarctic is the best site for THZ/FIR astronomy on the ground

Pre-studies (antenna/receiver/backend) for DATE5 to be built at Dome A in Antarctic are undergoing

Sensitive superconducting SIS and HEB mixers have been developed for DATE5

PMO is building the capability of developing large format TES/ MKIDs detectors

Acknowledgment

 Dome A FTS was supported by the Operation, Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments
CCAA, Polar Institute (China) & PLATO Team for the deployment & operation of the instrument
Blue Sky (Canada) and QMC (UK) for good cooperation in developing the instrument
Team for CAS's Int. Collaboration Partnership Program

NSFC & CAS funding for TeSIA and related projects
Contribution from my colleagues & graduate students
LERMA (Yan Delorme's group) for the fabrication of 1.4THz HEB chips
IREE (V. Koshlets's group) for the fabrication of 850GHz SIS chips
APC/IAS (Michel Piat's & Francois Pajot's groups) & ASIAA (Ming-Jye Wnag's group for the fabrication of TES devices
RIKEN (Chiko Otani's group) for the fabrication of MKIDs devices
Early collaboration with SRON/TUDelft on MKIDS with Akira, Jochem, Teun, ...