

HASHTAG, JINGLE and Nearby Galaxy Science

Matthew Smith

Dusting the Universe 2019

Overview – Continuum Talk

- > 20 minutes too short to talk about all JCMT nearby galaxy science
- Will talk about some very selected dust topics/problems
- ► HASHTAG
- JINGLE (also see Yang Gao talk)
- Potential future projects

Dust as a Tracer

1998 Ground-based 5 galaxies after 20 nights

To scale

- Gas as a tracer has been suggested since Hilderbrand (1983)
- Found promising with Herschel e.g., Eales et al. (2010/12), Sandstrom et al. (2014), need to account for the metallicity
- Becoming more prominent with ALMA continuum measurements of high-z galaxies being efficient (Scoville 2016).
- ► For Early-Types ETGs are more easily detected with Herschel than gas tracers (Smith et al. 2012, Amblard et al. 2014)

16 out of 660 sq. degrees

All H-ATLAS now released! (Smith et al. 2017, Furlanetto et al. 2017,

Dust Seems Ubiquitous

- Dust extends all the way into the galaxies outskirts
- Holwerda (2009) detected dust to 1.5 R₂₅ via occulting pair
- Traced in emission with IRAS (Nelson et al. 1998), and Herschel (Smith et al. 2016)
- Possible (???) explanation of Menard et al. results if assume galaxy clustering

- Dust opacities are uncertain
- Exact size distribution, composition... are uncertain
- How reliably can we know gas to dust ratio (metallicity, morphology, etc...)
- ► To solve these problems two local potential solutions:
 - Need samples that cover a range of all galaxy properties (e.g. JINGLE – also see)
 - High-resolution studies of objects that cover a range of objects

Herschel Exploitation of Local Galaxy Andromeda (HELGA)

- All 6 bands (include alternative Krauss project)
- Observations cover entire HI disc
- Fritz et al. (2012) survey paper – looking for dust associated with HI
- From nearby galaxies know dust extends to 2 × R₂₅ (Smith et al. 2016)

HELGA II: SED Fitting (Smith et al. 2012)

Processing:

- Convolve and rebin all bands
- 140pc resolution
- Restrict to all 5 fluxes $> 5\sigma$
- Take into account all correlated uncertainties
- 4000 independent pixels
- Fit 1 modified blackbody model
- Find a need for a variable β
- Method is not optimal as information is thrown away
- Both HELGA II (Smith 2012) and Groves (2012) found dust in the centre is heated by the stars in the bulge
- HELGA VII (Viaene 2016), from radiative transfer 91% dust heated from bulge, extending out to the 10kpc ring.

Beta Results

- Change in β around 3.1 kpc
- High values not multiple-T
- Not reliant one point statistics
- $\beta = \sim 1.8$ in main ring is in good agreement with Planck early results
- Results confirmed with independent Andromeda survey (Draine et al. 2014), also Planck sees similar variation (Planck Col/Peel et al. 2014)

Problem is no obvious correlation with say properties of molecular gas to provide shielding etc...

Variations of β in Other Galaxies

Planck – Dark Gas (2011)

Is there Dark Gas in Andromeda?

- Adjusted for radial metallicity gradient
- No region dominated by molecular gas
- Line-if-sight averaging
- orrected Σ_{a} Best fit X-factor $(2.0 \pm 0.4) \times 10^{20} \text{ cm}^{-2} [\text{K km/s}]^{\frac{5}{10}}$
- ► HELGA V (Mattson et al. 2014) suggests growth in ISM important from dust-to-metals and gas-to-dust ratio

HELGA IV: Viaene et al. (2014)

MAGPHYS panchromatic fits to entire image

Individual regions fit on global dust scaling relations (Cortese et al.)

Star-Formation Law in Galaxies

SFR as resolve individual stars with Hubble Breaks down in ULIRGS, and low metallicities **Global Scale** ▶ For M33 (Williams, T et al. 18) show how N varies when measuring on different scales Galaxy type Normal/irregular Low surface brightness Infrared-selected **Nearby Galaxies** Circumnuclear Metal-poor 0 25-0 50 r Andromeda – HELGA III 0.50-0.75 r₂₅
 0.75-1.00 r₂₆ 2.5 log [Σ_{SFR} (M_® year 1 2.0 N kpc 1.5 8 z Σ log 10(ZSFR 1.0 0.5 H, 0.0 0.2 0.4 0.6 .4 r / R_{M31} 2.0 -0.5 1.5 -1 $\log \left[\Sigma_{gas} \left(M_{\odot} pc^{-2} \right) \right]$ log SHILLY [Mo DC-2]

Kennicutt (multiple refs)

- Ultimate goal, to understand the key physical drivers and regulators of star-formation, and their defining physical relationships
- Andromeda (& soon M33) are unique as can get detailed SFH and current

How can we make more progress?

At 500µm the physical resolution is 140pc – not good enough compared to other tracers

► To make significant progress we need to:

- Improve SED fitting techniques to make best use of data
- 2. Improve observations, with higher-resolution and greater wavelength coverage

PPMAP – Marsh et al. (2015)

DIFFERENTIAL COLUMN DENSITY / 10²⁰ [H₂ cm⁻² PER BIN]

(slightly abbreviated image)

- PPMAP works on the raw-images, i.e., preserves all the information
- Instead of fitting an unphysical one temperature or assuming a T-distribution, PPMAP assumes a discrete range of temperatures
- Designed originally to work on galactic plane
- Generates x, y, T hypercube
- Uses Bayesian point source process algorithm
 - Inputs:

- Dust continuum images
- PSFs
- Grids of possible values of T (i.e., prior distribution)
- Assumption all has to be optically thin.
- Need High S/N data

PPMAP of Andromeda

 Use 12 bins in Temperature spread logarithmically spaced between 10-50K

- With Herschel data alone we can recover 30pc scales
- Whitworth et al. submitted, Marsh et al. (2018)

- ► T = 11.6 K ► T = 27.8 K
- ► T = 13.4 K ► T = 32.2 K
- ► T = 15.5 K ► T = 37.3 K
- ► T = 18.0 K ► T = 43.2 K

► T = 20.8 K ► T = 50.0 K

0.02	0.051	0.11	0.24	0.49	0.99	2	4	8	

► T = 11.6 K ► T = 27.8 K

► T = 13.4 K ► T = 32.2 K

► T = 15.5 K ► T = 37.3 K

► T = 18.0 K ► T = 43.2 K

► T = 20.8 K ► T = 50.0 K

0.02	0.051	0.11	0.24	0.49	0.99	2	4	8	

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K T = 13.4 K T = 32.2 KT = 15.5 K T = 37.3 KT = 18.0 K T = 43.2 K► T = 20.8 K ► T = 50.0 K

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K T = 13.4 K T = 32.2 K► T = 15.5 K ► T = 37.3 K T = 18.0 K T = 43.2 K► T = 20.8 K ► T = 50.0 K

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K T = 13.4 K T = 32.2 KT = 15.5 K T = 37.3 K► T = 18.0 K ► T = 43.2 K ► T = 20.8 K ► T = 50.0 K

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K ► T = 13.4 K ► T = 32.2 K T = 15.5 K T = 37.3 K► T = 18.0 K ► T = 43.2 K ► T = 20.8 K ► T = 50.0 K

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K ► T = 13.4 K ► T = 32.2 K ► T = 15.5 K ► T = 37.3 K ► T = 18.0 K ► T = 43.2 K ► T = 20.8 K ► T = 50.0 K

► T = 18.0 K ► T = 43.2 K

► T = 20.8 K ► T = 50.0 K

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K T = 13.4 K T = 32.2 KT = 15.5 K T = 37.3 K► T = 18.0 K ► T = 43.2 K ightarrow T = 20.8 K
ightarrow T = 50.0 K

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K ► T = 13.4 K ► T = 32.2 K ► T = 15.5 K ► T = 37.3 K ► T = 18.0 K ► T = 43.2 K

► T = 20.8 K ► T = 50.0 K

0.02 0.051 0.11 0.24 0.49 0.99 2 4 8

► T = 10.0 K ► T = 24.1 K ► T = 11.6 K ► T = 27.8 K T = 13.4 K T = 32.2 KT = 15.5 K T = 37.3 K► T = 18.0 K ► T = 43.2 K ► T = 20.8 K ► T = 50.0 K

Smith et al. (2012)

PPMAP

PPMAP – Mass-weighted β

PHAT vs PPMAP (Whitworth et al. submitted)

Have a good overall agreement between optical extinction and dust emission

HARP and SCUBA-2 HI-resolution Terahertz Andromeda Galaxy survey (HASHTAG)

Large program with the JCMT (I'm the UK PI) – 275 hr

- Idea is to get deep SCUBA-2 images for the entirety of Andromeda
- CO(J=3-2) is a big contaminant between 10-30%. Proposed 60 square arcminutes to calibrate contamination.

► 25pc resolution, expecting ~2000 clouds with > $10^3 M_{\odot}$ But what about problems SCUBA-2 and extended structure?

Large Scale Structure – Pilot Data

- SCUBA-2 uses filtering in the DR, set too light instrumental noise dominates, too harsh remove emission
- Had the idea to borrow from radio and use Planck 870µm to recover large scales so can use stronger filter

450µm

 At 450µm we use the SPIRE
 500µm emission to recover the large scale emission

HASHTAG – Current Status

- SCUBA-2 data now 25% complete
- Original plan (to allow for transients), observe half of each pointing then repeat
- Hit by the bad winter weather last year
- 2018/19 year enough time passed so changed to get full depth on the Hubble PHAT region, so can write Hubble comparison papers

HASHTAG – Software

- Unique data challenge
- Returned skyloop factor of 2 faster (disclaimer on measured our system)
- Python Large Scale recovery script – will be released soon

HASHTAG – Software

JCMT Andromeda Galaxy Survey SHTAG

HASHTAG – some science goals

Properties of dust and what do they depend on

- ▶ Testing the origins of βT relation
- What is heating the dust
- Measure the variations in gas-to-dust and X-factor
- Investigate the origins of the KS-law
- SF in M51 found to be in spurs off the spiral alms. In M31 we can test morphological relationship between SF & ISM, by using OB star in PHAT and other star formation indicators
- Sub-millimetre transients

When can you trust energy balance?

► Tom Williams (Williams et al. submitted)

Performed SKIRT radiative transfer on M33

Dust energy balance seems to work on 1.5kpc scales

Agrees with other works that suggest

Need for FIR/ Selection Effects

Badgers

- Contain <5% of the stellar mass but >35% of the dust mass.
- 1. Blue but dusty
- 2. Cold dust T, but high SFR
- 3. Very atomic gas rich, but molecular poor
- 4. Tend to be flocculent
- Possibly a low-z analogue to high-z objects

Clark et al, 2015

Dust Lanes ≠ **Dust Rich**

JINGLE – the JCMT legacy of dust and gas in Nearby Galaxies Exploration

- Designed to bridge gap of limited overlap between dust and CO surveys
- 193 galaxies 41-212 Mpc with SCUBA-2 from H-ATLAS designed so galaxies are very extended
- ▶ 90+ galaxies with CO(*J*=2-1)
- Will also be MaNGA
- Have also a HI for whole sample
- JINGLE II extension for starbursts & green valley targets
- JINGLE paper I (Saintonge et al. 2018 outlines sample, multi-band photometry, MAGPHYS etc...)

JINGLE II – Published last month (Smith et al. 2019)

- Presents all the 850µm
 SCUBA-2 data
- Lot of very detailed ways to optimise the SCUBA-2 reduction (10+ pages)
 - Optimised masks/reduction parameters
 - Modified calibration
 - Simulations injected all galaxies into blank data
- Complete set of dust matched aperture measurements

JINGLE II – Results

- S/N a struggle for a lot of objects
- Data inconsistent with 1TMBB
- 2TMBB does not seem to explain
- Broken dust emissivity law at ~500µm can provide a better fit

JINGLE Paper V (or maybe III) – Lamperti et al.

- Fits hierarchical Bayesian models to the data
- β correlates with surface mass density and metallicity
- Dust T correlates strongly with dust temperature per unit mass
- 26/192 galaxies have signs of a sub-mm excess

Nearby Galaxies Future Projects

- For large resolved nearby galaxies, problem has been preserving faint large scale emission – particularly in grade 3+ weather
- With stability of KIDS and larger FOV hopefully be able to preserve larger scales.
- For these large scales 850µm great for dust modelling side, but really would want the resolution at 450µm to resolve GMC complexes
- Faint dust in the outskirts of galaxies

Nearby Galaxies Future Projects

- More sensitive representative surveys at 850µm would allow us to sample much bigger variety in:
 - Specific star-formation rate
 - Metallicity
 - Stellar mass
 - Low-surface brightness objects
- Some galaxies HI/CO will be too hard (like BADGERS)
- Combining with instruments like NIKA/TolTec maybe able to map free-free emission

Nearby Galaxies Future Projects

- Bruce Draine always asking me about dust polarisation.
- With a 10x increase in mapping speed, it maybe measurable in galaxies
- Is the dust like the what we see in local neighbourhood of the Milky Way
- Personally I think 850µm is the right decision, but with NIKA and Toltec surveys I think 450µm will become more important in subsequent years

Conclusions

- Thank you for listening
- New members HASHTAG welcome!
- Need a new coordinator in Taiwan

