

Mapping к_d in Nearby Galaxies

Chris Clark

Pieter De Vis Simone Bianchi & the DustPedia team

Literature Values for κ_d

Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019)

Estimating κ_d with the HRS

$$\kappa_{\lambda} = \frac{D^2}{\xi \left(M_{HI} + M_{H_2}\right) \varepsilon_d f_Z} \sum_{i}^{n} \left(\frac{S_{\lambda_i}}{B_{\lambda}(T_i)}\right)_i$$

$$\kappa_{500} = 0.051 \text{ m}^2 \text{ kg}^{-1}$$

(± 0.24 dex)

James+ (2002); Ciesla+ (2012); Clark+ (2016)

Literature Values for κ_d

Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019)

Mapping κ_d Within Galaxies

Casasola+ (2017); Clark+ (2018); Casasola+ (in prep.) Clark+ (2019)

DustPedia

💊 🖓 🔪 💌 🏓 🛞 🥓

🕐 📴 👻 🐨 🖉 🐭 🌌 🐝 🔮 🔸 🥖 🔆 🤞

- 🖉 🕐 i 🖉 i 🥭 da 😤 🐷 s

🔹 🛞 + 🐧 🗇 + 🐼 🛋 🗶 H 🗶 🖉 🖌 + 🛣

• Ø Ø ALSS C \ Ø S Ø B Ø A \

1-1-1

🔪 💌 💌 🚺

* 🖉 TS 👻 • 🔨 🕴 👾 🕸 🔺 TS TS 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉

N. PAONISINS - INNER

- 1 1 - 6

N / N # /

11 2 4 3 7 4 9 9 9 9 9 9

• • • •

📳 (*) –

1. 11. . .

🖌 🎻 🖕

* * 💽 • 🗡 • 🗕

· · / / · >

The DustPedia Database

UV-NIR-FIR montage of some of the galaxies in the DustPedia database

- The DustPedia (Davies+, 2017) covers all 875 nearby (D<40 Mpc) extended (1' < D25 < 1°) galaxies observed by *Herschel*.
- Standardised imagery & photometry spanning 42 UV-microwave bands (Clark+, 2018).
- Homogenised atomic & molecular gas values for 764 & 255 DustPedia galaxies respectively (Casasola+, *in prep*.; De Vis+, 2019).
- 10000 consistently-determined gasphase metallicity datapoints (from IFU, slit, and fibre spectra) for 492 DustPedia galaxies (De Vis+ 2019).

Mapping κ_d Within Galaxies

Casasola+ (2017); Clark+ (2018); Casasola+ (in prep.) Clark+ (2019)

Metallicity Data in M74 & M83

M83

Metallicity Gradients

Gaussian Process Regression

Gaussian Process Regression

M74 Metallicity Map

M74 Metallicity Uncertainty

Gaussian Process Regression

M83 Metallicity Uncertainty

GPR – Works Reliably!

All the Necessary Data

Maps of κ_d within M73 & M83

Clark+ (2019)

κ_d vs ISM Surface Density

Alternate Model: DTM \propto Density

 \sim^{2} \sim^{2} \sim^{3} \sim^{8} \sim^{5} \sim^{6} \sim^{5}

Alternate Models

Alternate Models

Clark+ (2019)

Other Metallicity Prescriptions

Pettini & Pagel (2004); Tremonti+ (2004); Blanc+ (2015); Clark+ (2019)

Results Summary

Next: the SMC, at All Scales

Herschel only; no faint+large scales

Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.)

So, You Want To Study Dust in the MCs?

• Herschel!

- ...Except faint and large-scale emission all got filtered out.
- Okay, Planck then!
 - …Planck is great! But its resolution is poor, and it observed at >350um, so can't constrain dust temperature (and therefore mass).
- How about Spitzer?
 - ...Which has similar background-level problems to Herschel. Plus, severe non-linearity issues at high surface brightness for 160 um.
- But there's always IRAS, right?
 - ...Unless you want to observe something that is extended and has very high surface brightness. Like the Magellanic Clouds.
- Urm, I suppose I could try using Akari?
 - •
- Good point. How about JCMT? Or ISO?
 - ...Never observed more than tiny parts of the Clouds.
 - I suppose that leaves...

The Only Solid Data is COBE!

Chris Clark

Herschel-SPIRE

COBE-DIRBE

Meixner+ (2014); Roman-Duval+ (2017); Clark+ (in prep.)

Combine All The Data

Next: the SMC, at All Scales

Herschel only; no faint & large scales *Herschel* et al; Fourier-combined

Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.)

Results Summary

ు[∿] ం^స ం^స ం^స κ₅₀₀ (m² kg^{−1})

Chris Clark

DustPedia

Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019)

CO r_{2:1} Regression

SED-Fitting Example

Clark+ (2019)

Dust-to-Metals via Depletions

Chris Clark

 Wiseman+ (2016) and De Cia+ (2016) find DTM varies with metallicity, from DLA depletions; but for metallicities of >0.1 Z_☉ this variation is less than factor of <u>≤</u>2.

De Cia+ (2016); Wiseman+ (2016); Clark+ (2019)

Dust-to-Metals in Simulations

- Popping+ (2017) find DTM varies by factor of <4 at metallicities >0.1 Z_{\odot} in semi-analytic models.
- McKinnon+ (2016) find DTM varies by factor of ≤3.5 at z<0.5 in hydrodynamical zoom-in simulations.

Figure 5 from Popping+ (2017)

Figure 15 from McKinnon+ (2016)

McKinnon+ (2016); Popping+ (2017); Clark+ (2019)

Dust-to-Metals in THEMIS

Dust-to-metals expected to vary by factor of ~3.6 in THEMIS dust model (Jones+ 2017;2018).

Table 3. The gas-to-dust mass ratios (G/D), dust mass relative to hydrogen, dust mass relative to the available metals, carbon and oxygen abundances, [C] and [O], in dust (in parts per million, ppm) and the percentage by volume of carbonaceous matter in dust, $V_{f,C}$. This is shown as a function of the ISM environment and the corresponding dust model, where: DISM indicates the standard diffuse ISM dust model, C (O) carbon (oxygen) atom accretion from the gas and ice the presence of ice mantles. Fractional variations from the standard diffuse ISM abundances of carbonaceous nano-particles (big grains) $\frac{1}{n}C_{np}$ ($\frac{1}{n}C_{bg}$) or no contribution at all (0×). Low Z indicates sub-solar, low metallicity environments.

	$\approx n_{\rm H}$	$\approx T_{\rm gas}$			$M_{\rm dust}$	dust	[C]	[O]	$V_{f,C}$
Environment	(cm^{-3})	(K)	Dust type	G/D	$m_{\rm H}$	metal	(ppm)	(ppm)	(%)
dense	10^{4}	15	DISM+C+O+ice	55	0.0184	0.88	406	566	41
translucent	1500	20	DISM+C+O	81	0.0124	0.60	406	270	74
translucent	1500	20	DISM+C	102	0.0098	0.47	406	110	65
diffuse	50	100	standard DISM	135	0.0074	0.36	206	110	47
diffuse	50	100	$\frac{1}{2}C_{np}$	153	0.0066	0.32	135	110	36
diffuse	50	100	$\frac{1}{10}C_{np}$	170	0.0059	0.28	77	110	23
diffuse	50	100	$\frac{1}{10}C_{np}, \frac{1}{2}C_{bg}$	180	0.0056	0.27	52	110	17
energetic	0.25	10^{4}	$0 \times C_{\rm np}, \frac{1}{2}C_{\rm bg}$	185	0.0054	0.26	38	110	13
energetic	0.25	10^{4}	$0 \times C_{\rm np}, \tilde{0} \times C_{\rm bg}$	196	0.0051	0.25	13	110	5
energetic	0.25	10^{4}	bare a-Sil	202	0.0049	0.24	0	110	0
low Z/x-ray	0.01	10^{6}	$\frac{1}{3}$ a-Sil	613	0.0016	0.08	0	36	0
low Z/x-ray	0.01	10^{6}	$\frac{1}{30}$ a-Sil	6742	0.0002	0.01	0	4	0

Table 3 from Jones+ (2018)

GPR - Metallicity Residuals

RA

Chris Clark

De Vis+ (2019); Clark+ (2019)

GPR - Metallicity Map for M74

M74 Metallicity Uncertainty

GPR - Metallicity Map for M83

De Vis+ (2019); Clark+ (2019)