The JCMT Transient Survey: Single-Epoch YSO Flares

Bhavana Lalchand,National Central University,Taiwan Steve Mairs,Support Astronomer, East Asian Observatory, JCMT, Hilo Doug Johnstone, University of Victoria, Canada Gregory Herczeg, KIAA, Peking University,China Wen-Ping Chen, National Central University, Taiwan JCMT Transient team consortium⁺

Outline

- Introduction of the program
- Data analysis
- Results
- Conclusion

The JCMT Transient Survey SCUBA-2 850 µm & 450 µm

8 Regions < 500 pc (GBS)

4 **3** Year Survey

182 Protostars, 800 Disk sources One Month Cadence

Mairs et al. 2017 & 2018, Herczeg et al. 2017, ApJ

Name	Institute	Region	notes			
Gregory Herczeg	KIAA/PKU	CN	Coordinator: Regions			
Doug Johnstone	NRC	CA	Coordinator: Analysis, Calibration, 450			
Yuri Aikawa	U. Tokyo	JP	Chemistry, Interferometry			
Geoff Bower	ASIAA	TW	Calibration			
Vivien Chen	NTHU	TW	Host of Taiwan team meeting			
Jennifer Hatchell	Exeter	UK	JCMT GBS Liaison			
Jeong-Eun Lee	Kyung-Hee	KR	Chemistry, Interferometry, SED-fitting			
Most Active Members of Sub-Teams						
James Lane	Victoria	CA	Undergrad; Calibration			
Helen Kirk	NRC Herzberg	CA	Calibration			
Yong-Hee Lee	Kyung-Hee	\mathbf{KR}	Analysis			
Miju Kang	KASI	\mathbf{KR}	Regions			
Sung-ju Kang	KASI	\mathbf{KR}	Regions			
Giseon Baek	Kyung-Hee	\mathbf{KR}	PhD student; SED-fitting			
Oscar Morata	ASIAA	TW	faint sources			
Wen-Ping Chen	NCU	TW	single-epoch variability			
Bhavana Lalchand	NCU	TW	PhD student; single-epoch variability			
Aleks Scholz	St. Andrews	UK	Regions, IR-Monitoring			
Tim Naylor	Exeter	UK	IR-Monitoring			
Carlos Contreras-Pena	Exeter	UK	IR-Monitoring			
Dimitris Stamatellos	Lancashire	UK	SED-fitting			
Benjamin Macfarlane	Lancashire	UK	PhD Student; SED-fitting			
Paula Teixeira	St. Andrews	UK	Faint sources			
Mi-Ryang Kim	KASI	Korea	Filaments			
Mitsuhiko Honda	Kusube Univ	Japana	mid-IR follow-up			
Graham Bell	EAO	EAO	Calibration			
Sarah Graves	EAO	EAO	Calibration			
Steve Mairs	EAO	EAO	(former PhD student) Calibration, 450			

Regional Coordinators

Full membership list: https://www.eao.hawaii.edu/transient/WelcomePage

Calibrated Light Curves and Variance

Light Curves at 850 microns – Secular Variations (Johnstone et al. 2018, ApJ)

Calibrated Light Curves and Variance

Our latest discovery

(a) 850 μm 2016-11-20 (UT).

00* 18.00* 16.00* 5^h35^m14.00* RA (J2000)

(b) 850 μm 2016-11-26 (UT).

(d) The co-add of all 850 $\mu{\rm m}$ epochs not including 2016-11-26.

- T Tauri Binary System in the Orion Molecular Cloud.
- A K7+M1.5 with a projected separation of 0.86".
- It has been classified as a "Disk" by Megeath et al. (2012) based on its mid-infrared colors.
- Strongly suggests that this arguably the most powerful radio flare ever seen from a solar-like corona, and is also the first stellar flare detected in the sub-millimeter.

Mairs,Lalchand et.al (2019) ApJ

My Data Analysis

- **1.** We used ClumpFind Algorithm Fellwalker.
- Fellwalker algorithm: Considers pixel which are above the background noise and merges the adjacent pixels calling it as a clump. From which a list a clump parameters is produced.
- 2. Detection threshold is 3 σ (above sky noise) and above.

Regions	Regions	Central R.A	Central Decl	Number of Epochs
Perseus	NGC 1333	03:28:54	+31:16:52	33
Perseus	IC348	03:44: 1 8	+32:04:59	30
Orion	OMC2/3	05:35:33	-05:00:32	28
Orion	NGC 2024	05:41:41	-01:53:51	30
Orion	NGC 2068	05:46:13	-00:06:05	31
Ophiuchus	Core	16:27:05	-24:32:37	27
Serpens	Main	18:29:49	+01:15:20	48
Sepens	South	18:30:02	-02:02:48	30

Serpens South

Single-Epoch

Co-add

RMS = 0.0117 Jy/beam

- Matched
- Core
- Unmatched

RMS = 0.002 Jy/beam

Serpens South

- 430 distinct sub-mm sources found in the co-add.
- 3384 distinct sub-mm sources found over ~30 epochs (100 per epoch).
 - ~3000 (90%) of these match with co-add sources.
 - ~360 (10 %) are 'close' to co-add sources.
 - 7 are entirely unmatched with co-add sources.

Serpens South – Single Epoch vs Known YSOs

Oph Core

- 350 distinct sub-mm sources found in the co-add.
- 2389 distinct sub-mm sources found over ~25 epochs (10 per epoch).
 - ~2200 (90%) of these match with co-add sources.
 - ~200 (8 %) are 'close' to co-add sources.
 - 7 are entirely unmatched with co-add sources.
 - Steve finds all of these as well.

Oph Core– Single Epoch

Conclusion

- **Time Allocation:** A total of 200 hrs spread uniformly over 4 years (through January 2020), including a 1 yr/50 hr extension. At present the program is 85% complete in time allocation (169.4 hrs used).
- **Success:** Our survey has demonstrated the feasibility of a sub-mm transient survey, developed the techniques needed to reach the necessary precision of 2%, and have applied these results to measure the variability of protostars.
- **Survey Extension:** Continue monthly monitoring of 8 fields

Higher cadence monitoring (1-2 weeks for 1-2 fields? Flare monitoring?)

Additional monitoring campaigns

Other nearby low-mass regions

Intermediate/high-mass star forming region

ToO requests of FUors/Exors identified in other surveys

• **Pipeline:** We discovered a T Tauri flare JW566 in Orion. We could have discovered as soon as it occurred. Once detected we can do a follow-up using for example ALMA and other telescope.