

Scuba-2 Ultra Deep Imaging EAO Survey (STUDIES) : Multiple-wavelength properties and luminosity functions of 450-µm-selected galaxies Speaker: Chen-Fatt Lim (ASIAA & NTU, Taiwan)

Collaborators: Wei-Hao Wang, Chian-Chou Chen & STUDIES team (136 members from Canada, China, Korea, Japan, United Kingdom, Taiwan, etc)

JCMT User Meeting 2019 @ ASIAA, 6-8 November 2019

A comparable integrated radiative energy comes from IR-to-sub-mm and UV-to-optical wavelengths
 IR-luminous population plays a dominant role in cosmic star formation at *z* > 1.5, which is occupying the same epoch of the peak star-formation and AGN activities

Introduction

Observation

Scientífic Progress

What the sub-millimeter galaxies (SMGs) could be?

(c) Interaction/"Merger"

 now within one halo, galaxies interact & lose angular momentum
 SFR starts to increase
 stellar winds dominate feedback
 rarely excite QSOs (only special orbits)

(b) "Small Group"

- galaxies coalesce: violent relaxation in core - gas inflows to center: starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

dominates luminosity/feedback - remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

 dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly
 characteristically blue/young spheroid

(g) Decay/K+A

 QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 "hot halo" from feedback

 sets up quasi-static cooling

- star formation terminated - large BH/spheroid - efficient feedback - halo grows to "large group" scales: mergers become inefficient - growth by "dry" mergers

- From the low-*z* observations, the IR luminosity is correlated with high SFRs and galaxy mergers
- Dust particle re-radiates the light at IR/sub-mm during the starburst phase
- Starburst phase is believed to be short-lived (~200 Myr)
- Our understanding of this population is still incomplete, especially at faint and high-redshift ends
- We need a deep and huge sample size of IR/sub-mm selected galaxies

cflim@asiaa.sinica.edu.tw

Summarı

Observatío

Scientific Progres

The James Clerk Maxwell Telescope (JCMT) – SCUBA-2

Observations

Scanning 450- and 850-μm images simultaneously 7.9" and 15" spatial resolution at 450 μm and 850 μm 450-μm observations are sensitive to the water vapor

Image Credit: William Montgomerie

cflim@asiaa.sinica.edu.tw

7

Previous publications

Future Prospec

Summary

Current results of STUDIES-COSMOS

- STUDIES (by March 2018; first released) + SCUBA-2 archival data from S2CLS (Geach+13,17) and Casey+13
- The r.m.s noise is ~ 0.65 mJy in the deepest region
- 256 sources with $S/N \ge 4$
- 134 sources have VLA 3GHz; while 76 sources have MIPS
 24-µm counterparts
- 192 (out of 210) sources have optical counterparts in the COSMOS field

C.-F., Lim et al. 2019 submitted to ApJ

cflim@asiaa.sinica.edu.tw

Physical properties of 450-µm sources

- COSMOS2015 catalog modified black body MIPS $\langle z \rangle = 1.8 \pm 1.0$ lephare SED Herschel 10⁻²⁵ Fv [erg/s/cm²/Hz] SCUBA-2 $\langle \log(M_*) \rangle = 10.8 \pm 0.4 \,\mathrm{M}_{\odot}$ $\beta_{\rm UV}$ and $L_{\rm UV}$ (SFR_{UV}) 10⁻²⁶ FIR wavebands 10⁻²⁷ $\langle \log(L_{\rm IR}) \rangle = 12.1 \pm 0.5 \, \rm L_{\odot} \, (SFR_{\rm IR})$ $z = 2.87 \pm 0.00$ $z = 2.89 \pm 0.74$ $T_{\rm d} = (61.8 \pm 0.9) \, {\rm K}$ $T_{\rm d} = (44.6 \pm 2.1) \, {\rm K}$ $\langle T_{\rm d} \rangle = (38 \pm 10) \, {\rm K}$ $\log(L_{\rm IR}) = (13.14 \pm 0.03) \, {\rm L}$ $\log(L_{\rm IR}) = (12.65 \pm 0.16)$ $S/N (450 \,\mu m) = 11.8$ $S/N (450 \,\mu m) = 10.1$ $10_{-24}^{-28}\\10$ Whole sample w/ optical redshifts 850 µm detected 450 µm sources Spectroscopic redshifts Fv [erg/s/cm²/Hz] FIR redshifts 10-25 20 10-26 Ē 0.6 number 12 ipel 0.4 10-27 0.99 ± 0.00 $z = 0.26 \pm 0.00$ 10 $= (24.6 \pm 3.6) \,\mathrm{K}$ $T_{\rm d} = (28.6 \pm 3.6) \, {\rm K}$ $og(L_{IR}) = (11.65 \pm 0.18) L_{\odot}$ $\log(L_{\rm IR}) = (10.65 \pm 0.04) L_{\odot}$ 10⁻²⁸- $S/N (450 \,\mu m) = 8.1$ $S/N (450 \,\mu m) = 5.6$ 5 - 10^{2} 10^{3} 10^{2} 10^{1} 10^{1} $\lambda [\mu m]$ $\lambda \, [\mu m]$ 0 0 C.-F., Lim et al. 2019 submitted to ApJ Ζ
 - cflim@asiaa.sinica.edu.tw

 10^{3}

The Star-forming Main Sequence

Scientific Progress

C.-F., Lim et al. 2019 submitted to ApJ

The Star-forming Main Sequence

The Star-forming Main Sequence

The Star-forming Main Sequence

Observations

Scientific Progress

$T_{\rm d} - L_{\rm IR}$ relation

- Our galaxies overlap with the nearby (Symeonidis+13) and high-redshift (Rooseboom+12; Zavala+18) samples
- The emission from the majority of dust is in equilibrium
- Physical effect + selection effect
- 850-μm selection effect biases against the hotter population, while the 450-μm biases against cooler sources at high redshift
- Our sample provides a good representation of high-luminous ($L_{\rm IR} > 10^{12} L_{\odot}$) population out to z = 3

Observations

Scientífic Progres.

$T_{\rm d} - L_{\rm IR}$ relation

- Our galaxies overlap with the nearby (Symeonidis+13) and high-redshift (Rooseboom+12; Zavala+18) samples
- The emission from the majority of dust is in equilibrium
- Physical effect + selection effect
- 850-μm selection effect biases against the hotter population, while the 450-μm biases against cooler sources at high redshift
- Our sample provides a good representation of high-luminous ($L_{\rm IR} > 10^{12} L_{\odot}$) population out to z = 3
 - 450-μm detection limits
 850-μm confusion limits

$T_{\rm d} - L_{\rm IR}$ relation

- Our galaxies overlap with the nearby (Symeonidis+13) and high-redshift (Rooseboom+12; Zavala+18) samples
- The emission from the majority of dust is in equilibrium
- Physical effect + selection effect
- 850-um selection effect biases against the hotter population, while the 450-µm biases against cooler sources at high redshift
- Our sample provides a good representation of high-luminous ($L_{IR} > 10^{12} L_{\odot}$) population out to z = 3
 - 450-µm detection limits 850-µm confusion limits

$T_{\rm d} - z$ and $T_{\rm d} - \Delta MS$ relations

- No evolution of $T_{\rm d}$ with $z (L_{\rm IR} > 10^{12} \rm L_{\odot} at z < 3)$
- A moderate correlation between T_d and ΔMS
- Morphological classes (Chang+18): Mergers/irregulars are warmer; starbursts of SMGs are driven by mergers that lead to a sharp increase in T_d during the burst (e.g. Hayward+11; Cowley+17)

Observation

Scientific Progress

Summary

IR Luminosity Function

We construct the IR-LFs with $1/V_{\text{max}}$ and likelihood methods (free- and fixed- α)

At z < 2.5, our α (-0.6, -0.4) are consistent with the ALMA-based estimation ($\alpha = -0.4$, Koprowski+17)

The constraint in α (=-0.9) may be weak at z > 2.5

C.-F., Lim et al. 2019 submitted to ApJ

1.0

0.8 0.6 0.4 0.4

0.2

0

C.-F., Lim et al. 2020 in prep

9.5

10.0

10.5

 $\log(M_*)$ [M_o]

11.0

11.5

Machine Learning (Preliminary Results)

- Training dataset in Machine Learning (XGBoost):
 - 164 SMGs ($S_{450 \,\mu m} \ge 4 \text{ mJy} + \text{optical counterparts}$)
 - 4705 field galaxies reside within r.ms.(450) < 1 mJy region (Ks < 24.5)
- 78 color-colors from thirteen-band photometry $(uBV ri^+z^{++}JHKs[3.6][4.5][5.8][8.0])$
- 5620 SMG candidates in the COSMOS field (1.6 deg²)
 - Expected finding number is 6111±1596
 - ~86 ± 1% have MIPS 24- μ m /VLA counterparts _{1.2} z < 2
 - Stacked 450- μ m flux = 4.9 \pm 0.2 mJy
- Comparison samples (z < 2)
 - Passive galaxies
 - Star-forming galaxies

cflim@asiaa.sinica.edu.tw

0.5 1.0 1.5

0.0 °ex

12.0

2.5 3.0

2.0

 $\omega(\theta)$

Clustering measurements (Preliminary Results)

- Auto-correlation technique in the SMG candidates and the comparison samples
- Constrain the dark matter halo masses and the clustering evolutions
- No evidence that clustering signals of SMGs have evolution with z (reside in the typical halo mass of ~ $10^{13}h^{-1}M_{\odot}$)
- Passive galaxies show stronger clustering signals
- No significant difference between the SMG candidates and star-forming 25 oso galaxies (matched z and M_*) SMG candidates (this work) Passive galaxies (this work) Star-forming galaxies (this work) 0.5 < z < 1.01.0 < z < 2.02.0 < *z* < 3.0 20 Webb et al. 2003 10^{1} Blain et al. 2004 SMG candidates Chen et al. 2016 Chen et al. 2016 SMG candidates Weiß et al. 2009 Passive galaxies SMG candidates r₀ [h⁻¹Mpc] Star-forming galaxies Passive galaxies William et al. 2011 Star-forming galaxies Hickox et al. 2012 10^{0} Chen et al. 2016 Wilkinson et al. 2017 Amvrosiadis et al. 2019 An et al 2019 10^{-} 5 10^{-2} 10^{-1} 100 10^{-1} 100 10^{1} 10^{-1} 100 101 10^{-1} 10^{1} 0.10 1.00 θ [arcmin] θ [arcmin] θ [arcmin] Ζ C.-F., Lim et al. 2020 in prep C.-F., Lim et al. 2020 in prep

Summary

- We constructed an extremely deep 450-µm image
- About 35% of our sample are classified as starburst galaxies
- Our sample provides a good representation of high-luminous population out to z = 3
- We find a moderate tendency between the T_d and ΔMS , which favors the scenario that the starbursts of SMGs are driven by merger activity
- No evidence that clustering signal of SMG has evolution with z
- No significant difference between the SMG and star-forming galaxies (matched z and M_*)

More and more exciting results will be published with complete STUDIES data !!!!

Sub-millimeter galaxies (SMGs)

- Typical SMGs have $L_{\rm IR} > 10^{11} \rm L_{\odot}$
- The negative *K*-correction leads us easy to detect the SMGs at high redshift
- The SMGs reside in haloes of mass > $10^{13}h^{-1}M_{\odot}$, which are believed to be the progenitors of massive systems (ellipticals) in the local Universe

Observation

Scientífic Progress

Summar

Observations

The unidentified sources are consistent with being at high redshift

cflim@asiaa.sinica.edu.tw

Summary

Dust Attenuation Correlation

C.-F., Lim et al. 2019 submitted to ApJ

- The $L_{\rm IR}/L_{\rm UV}$ (IRX) and UV-slope ($\beta_{\rm UV}$) can indicate the amount of dust attenuation
- 450-μm sources are on or above the local relations and span a wide range of IRX values (Howell+10; Casey+14)
- Most of our sources lie above the SMC relation (the limit of star-forming galaxies)

cflim@asiaa.sinica.edu.tw

The models and our observations start to diverge for high redshift bins (z > 1.3 or z > 2.5)

The models require some ingredient that produces more IR-emitting galaxies at high redshift

C.-F., Lim et al. 2019 submitted to ApJ

Introduction

Koprowski et al. 2017 (IR)

 10^{-3}

The contribution of ULIRGs ($L_{IR} = 10^{12} - 10^{13} L_{\odot}$) to SFRD rises from low redshift and plays a comparable role with LIRGs ($L_{IR} = 10^{11} - 10^{12} L_{\odot}$) at z > 2

ULIRGs (Magnelli et al. 2013)

cflim@asiaa.sinica.edu.tw

Scientific Progres.

Summary

Previous publications

- A proposed passive galaxy at z = 3.717Red colors (H – [4.5] > 4)
 - High EW of Balmer absorption lines
- $L_{IR} = 9.2 \times 10^{11} L_{\odot} (\text{SFR} \sim 100 \text{M}_{\odot} \text{ yr}^{-1})$
- Ongoing merger event

Remove the tension between observations and models of galaxy formation

- Compares our 450 μ m SMGs with normal SF galaxies (*NUVrJ*)
- Both SMGs and the matched galaxies show high fractions (70%) of disturbed features, and the fractions depend on the SFRs.
- These suggests that their star formation activity is related to galaxy merging, and the stellar structures of SMGs are similar to those of star-forming galaxies.

Thank you

