Comments to talks by Derek and Kate

Pol. I, ang., frac.

Porlar coordinate

Noise

Positive and negative values

Normal distribution

Noise

Positive values only

Pol. ang.: von-Mises-Fisher dist. Pol. frac.: Nakagami-Rice dist. 仲上(1940)-ライス(1945)分布

Nakagami-Rice distribution for the observed polarization fraction

Figure 7. 偏波の記述 (左) と干渉計複素ヴィジビリティの記述 (右) の背後にある数学は共通である.

Noise PDF

Noise PDF

Pol. ang.: von-Mises-Fisher dist. Pol. frac.: Nakagami-Rice dist. 仲上(1940)-ライス(1945)分布 (1940)-ライス(1945)分布 ..., should look at the phase rather than

amplitude. The difference between the

phase distribution for the values of

 $S/\Delta S$ equal to 0 and 1 is much more

obvious than the difference between

the associated amplitude distributions.

p.132, "Sensitivity" by P. C. Crane & P. J. Napier in "Synthesis imaging radio astronomy" (1989)

polarization angle

..., should look at the phase rather than polarization fraction amplitude. The difference between the

phase distribution for the values of

 $S/\Delta S$ equal to 0 and 1 is much more

obvious than the difference between

the associated amplitude distributions.

p.132, "Sensitivity" by P. C. Crane & P. J. Napier in "Synthesis imaging radio astronomy" (1989) A first comparison between 850 and 450 micron dust polarization images toward high-density star-forming gas in Ophiuchu A

Ray S. Furuya with a collaboration of BISTRO Consortium

Team BISTRO-J is supported by 262 individuals

Outline of talk

Introduction of 450 um polarization observations Data reduction and inspection 850 vs. 450 µm maps in Ophiuchus A Extremely early-phase analysis on pol. spec. Summary and future works

What does polarimetry tell us?

• Intrinsic polarization of the emitter

- Anisotropy of directions of charged-particles' motions
 - e.g., thermal emission from aligned dust, synchrotron radiation
- Absorption or emission in molecules and atoms,
 - e.g., Zeeman effect, maser, laser, Goldreich-Kylafis effect
- Polarization caused in <u>radiative transfer process</u>
 - Liner polarization by scattering and reflection
 - Circular polarization by multiple scattering
 - Linear polarization by selective absorption and/or scattering, e.g., absorption and scattering by aligned dust
 - Faraday rotation
 - Instrumental polarization (IP) caused by telescope system

POL-2 + SCUBA2 on JCMT

POL-2: Single Beam Imaging Polarimeter

cf. SCUBA-2 only, 180 Hz sampling

the GoreTex dome cover seen from the Cassegrain focus

Main source of Instrumental Polarization (IP)

What does polarimetry tell us?

Intrinsic polarization of the emitter

- Anisotropy of directions of charged-particles' motions
 - e.g., thermal emission from aligned dust, synchrotron radiation
- Absorption or emission in molecules and atoms,
 - e.g., Zeeman effect, maser, laser, Goldreich-Kylafis effect
- Polarization caused in <u>radiative transfer process</u>
 - Liner polarization by scattering and reflection
 - Circular polarization by multiple scattering
 - Linear polarization by selective absorption and/or scattering, e.g., absorption and scattering by aligned dust
 - Faraday rotation

Instrumental polarization (IP) caused by telescope system

Observations and data reduction

Telescope and instruments

- James Clerk Maxwell Telescope (JCMT) 15m
- 2016 April May
- Polarimeter, POL-2 (rotating half-wave plate plus wire-grid analyzer) plus detector, SCUBA-2
- Observed wavelength of 450 and 850 micron simultaneously, yielding angular resolutions of 8" at 450 um and 14" at 850 um
- The 850 micron data are published in Kwon, J., et al. 2018 ApJ 859, 4.

Data reduction and analysis

450 micron data reduction

- Selected data with atmospheric tau225 < 0.04</p>
- Reduced "pol2map" pipeline w. ver.3 Instrumental Polarization (IP) model released 2019 August 7th; Utilized November 1st. v. of Starlin
- Obtained Stokes I, Q, and U maps with a pixel size of 4"

450 micron data analysis

- Residual of sinusoidal fitting to the time-series data are tracked, and stored as variance of Stokes I, Q, and U images
- Convolved a Gaussian beam so that the dual-band I, Q, and U image and their variance images have the identical 14" beam
- Produced "vector catalog" from the convolved images with debiasing
- Matched the 450 and 850 micron "vector" catalogs to make point-by-point comparison

Data inspection

Sensitivity comparison of BISTRO data

Sensitivity of POL-2 maps in Stokes / vs. Pl

Sensitivity of POL-2 maps in Stokes / vs. Pl

Sensitivity of POL-2 maps in Stokes / vs. Pl

Data inspection

Ophiuchus A

Ophiuchus A star-forming region

Ophiuchus A star-forming region

Data Inspection: Ophiuchus A, Stokes I

Data Inspection: Ophiuchus A, Stokes I

Data Inspection: Polarized Intensity, PI

Resuits

Maps

B-fields traced by 850 micron observations

What are presented here?

- Color image: Polarized intensity, PI w. pixel size =12"
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length to see directions

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak
 polarization

the image = 850 micron Polarized Intensity, $PI = \sqrt{Q^2 + U^2}$

B-fields traced by 450 micron observations

What are presented here?

- Color image: Stokes I
 intensity w. pixel size =12"
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see *B* field directions
- "Vectors" are shown with identical length to see directions

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak polarization

the image = 450 micron Stokes *I* intensity

Analysis

Polarization angles observed at the dual-bands

What are presented here?

- Color image: 450 um Stokes *I* intensity *w. pixel size =12"*
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850
 mic, Brown: 450 mic

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak
 polarization

 $\frac{1}{2}$ Well-aligned B-fields at the peak and periphery \Rightarrow IP model is reasonable

What are presented here?

- Color image: 450 um Stokes
 I intensity *w. pixel size =12"*
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850
 mic, Brown: 450 mic

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak
 polarization

Well-aligned B-fields at the peak and periphery ⇒ IP model is reasonable
Coherent and incoherent patterns are identified in each band.

Analysis

Polarization angles observed at the dual-bands

What are presented here?

- Color image: 450 um polarized intensity, PI, w.
 pixel size =12"
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak
 polarization

the image = 450 micron Polarized intensity, $PI = \sqrt{Q^2 + U^2}$

What are presented here?

- Color image: 450 um polarized intensity, PI, w.
 pixel size =12"
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak

polarization

the image = 450 micron Polarized intensity, $PI = \sqrt{Q^2 + U^2}$

What are presented here?

- Color image: 450 um polarized intensity, PI, w.
 pixel size =12"
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak
 polarization

Excluding non-parallel vectors ⇒ Excluding line of sight where dual bands tracing different temperature gas

What are presented here?

- Color image: 450 um Stokes *I* intensity *w. pixel size =12"*
- Contour: 90, 95, 99% percentile of Stokes *I*
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850
 mic, Brown: 450 mic

How vectors are selected?

 A threshold of I/ΔI > 10 and PI/ΔPI > 3 so as not to miss intrinsically-weak
 polarization

the image = 450 micron Stokes *I* intensity

Comparison with SOFIA's 89 and 154 micron results

effective beam size~8"

beam size = 13.6"

Well-polarized in low-density and well-illuminated cloud's periphery Less-polarized in high-density and less-illuminated cloud's peak

Analysis

Polarization fractions and pol. spectral index

P observed in submm emission polarimetry

$$P_{\nu} = p_{\text{dust},\nu} \cdot R_{\nu} \cdot F_{\nu} \cdot \cos^2 \gamma$$

 $p_{\mathrm{dust}, \nu}$: Dust properties — size, shape, composition Voshchinnikov & Hirashita 2014

 $R_{
u}$: Grain alignment efficiency w.r.t. local B fields Goodman 1992; Whittet et al. 2008; Hoang & Lazarian 2014

$$F_{\nu}: \text{Depolarization from 2 (or multi-) layers along l.o.s.} \\ \text{e.g., } F = \frac{P}{P_1 + P_2} \text{ where } P^2 = P_1^2 + P_2^2 + 2P_1P_2cos2\Delta\psi \text{ for 2 layers} \\ \text{Myers & Goodman 1991; Jones et al. 1992, 2015; Planck 2015 XX, 2016 XXXIIII} \\ \text{COS}^2 \gamma: \text{B-field geometry (where } \gamma \text{ is w.r.t. p.o.s.)} \\ Planck 2015 XX, 2016 XXXIIII \end{cases}$$

P observed in submm emission polarimetry

$$P_{\nu} = p_{\text{dust},\nu} \cdot R_{\nu} \cdot F_{\nu} \cdot c c \gamma^{\mu}$$

$p_{\mathrm{dust}, \nu}$: Dust properties — size, shape, composition Voshchinnikov & Hirashita 2014

 $R_{
u}$: Grain alignment efficiency w.r.t. local B fields Goodman 1992; Whittet et al. 2008; Hoang & Lazarian 2014

$$F_{\nu}: \text{Depolarization from 2 (or multi-) layers along l.o.s.}$$

e.g., $F = \frac{P}{P_1 + P_2}$ where $P^2 = P_1^2 + P_2^2 + 2P_1P_2cos2\Delta\psi$ for 2 layers
Myers & Goodman 1991; Jones et al. 1992, 2015; *Planck* 2015 XX, 2016 XXXIIII

Excluding non-parallel vectors ⇒ Excluding line of sight where dual bands tracing different temperature gas

450 um polarization fraction vs. 850 um p.f.

450 um polarization fraction vs. 850 um p.f.

Polarization spectra

BISTRO measurements toward Ophiuchus A reconciles with VM2012, but shallower than their results. *Could be flat in cloud's periphery?*

Summary and future works

450 micron observations: methodology

- The 3rd generation instrumental Polarization (IP) model of the telescope is verified via scientific analysis
- The new capability allows to explore B-field structure towards the innermost dense regions with an angular resolution of 7"

First look of Ophiuchus A 450 micron data

 Polarization Angles: Caught the B-field structure down to ~1e3 AU scale — corresponding to N~1e24 cm⁻² region — which maintains coherency from the pc-scale one.

Polarization Fractions: Observed polarization properties may be explained w. Radiative Alignment Torque paradigm. But, "What causes the anti-correlation between P and N?" and "What is a general pol. spectrum?" may be studied using pol. spectra(um).