Comments to talks by Derek and Kate

Stokes I，Q，U
Cartesian coordinate

Noise

Positive and negative values
Normal distribution

Pol．I，ang．，frac． Porlar coordinate

Noise

Positive values only
Pol．ang．：von－Mises－Fisher dist． Pol．frac．：Nakagami－Rice dist．仲上（1940）－ライス（1945）分布

${ }_{u}$ Polarimetry

Interferometer

 Im

Figure 7．偏波の記述（左）と干渉計複素グャジビリティの記述（右）の背後にある数学は共通である．

Noise PDF

Pol．ang．：von－Mises－Fisher dist．Visibility phase：von－Mises－Fisher dist． Pol．frac．：Nakagami－Rice dist．仲上（1940）－ライス（1945）分布

Noise PDF

..., should look at the phase rather than

amplitude. The difference between the

phase distribution for the values of
S/ ΔS equal to 0 and 1 is much more
obvious than the difference between
the associated amplitude distributions.
p.132, "Sensitivity" by P. C. Crane \& P. J. Napier in
"Synthesis imaging radio astronomy" (1989)

polarization angle

 ..., should look at the phase rather than polarization fraction amplitude. The difference between thephase distribution for the values of
$S / \Delta S$ equal to 0 and 1 is much more obvious than the difference between the associated amplitude distributions.
p.132, "Sensitivity" by P. C. Crane \& P. J. Napier in
"Synthesis imaging radio astronomy" (1989)

A first comparison between 850 and 450 micron dust polarization images toward high-density star-forming gas in Ophiuchu A

Ray S. Furuya

Team BISTRO-J is supported by 262 individuals

Outline of talk

Introduction of 450 um polarization observations
Data reduction and inspection
850 vs. $450 \mu \mathrm{~m}$ maps in Ophiuchus A
Extremely early-phase analysis on pol. spec
Summary and future works

What does polarimetry tell us?

- Intrinsic polarization of the emitter
\& Anisotropy of directions of charged-particles' motions
e.g., thermal emission from aligned dust, synchrotron radiation
\& Absorption or emission in molecules and atoms, e.g., Zeeman effect, maser, laser, Goldreich-Kylafis effect
- Polarization caused in radiative transfer process
\& Liner polarization by scattering and reflection
\& Circular polarization by multiple scattering
\& Linear polarization by selective absorption and/or scattering,
e.g., absorption and scattering by aligned dust
\& Faraday rotation
Φ Instrumental polarization (IP) caused by telescope system

POL-2 + SCUBA2 on JCMT

副鏡

Holland et al. 2013

POL-2: Single Beam Imaging Polarimeter

2 Hz rotation;
4 times data dumping each rotation $\rightarrow 8 \mathrm{~Hz}$ sampling
cf. SCUBA-2 only, 180 Hz sampling

the GoreTex dome cover seen from the Cassegrain focus

What does polarimetry tell us?

- Intrinsic polarization of the emitter
\& Anisotropy of directions of charged-particles' motions
e.g., thermal emission from aligned dust, synchrotron radiation
\& Absorption or emission in molecules and atoms,
e.g., Zeeman effect, maser, laser, Goldreich-Kylafis effect
- Polarization caused in radiative transfer process
\& Liner polarization by scattering and reflection
\& Circular polarization by multiple scattering
\& Linear polarization by selective absorption and/or scattering, e.g., absorption and scattering by aligned dust \& Faraday rotation
§ Instrumental polarization (IP) caused by telescope system

Observations and data reduction

Telescope and instruments

- James Clerk Maxwell Telescope (JCMT) 15m
- 2016 April - May
- Polarimeter, POL-2 (rotating half-wave plate plus wire-grid analyzer) plus detector, SCUBA-2
- Observed wavelength of 450 and 850 micron simultaneously, yielding angular resolutions of $8^{\prime \prime}$ at 450 um and $14^{\prime \prime}$ at 850 um
- The 850 micron data are published in Kwon, J., et al. 2018 ApJ 859, 4.

Data reduction and analysis

450 micron data reduction

- Selected data with atmospheric $\operatorname{tau}_{225}<0.04$
- Reduced "pol2map" pipeline w. ver. 3 Instrumental Polarization (IP) model released 2019 August 7th; Utilized November 1st. v. of Starlin
- Obtained Stokes I, Q, and U maps with a pixel size of 4"

450 micron data analysis

- Residual of sinusoidal fitting to the time-series data are tracked, and stored as variance of Stokes I, Q, and U images
- Convolved a Gaussian beam so that the dual-band I, Q, and U ave the idonneal $14^{\prime \prime}$ bam
- Produced"ractor catalog from the convolved images with debiasing
- Matched the 450 and 850 micron "wctor" catalogs to make point-by-point comparison

Data ins
 0 1

 Sensitivity comparison of BISTRO data

- Green and brown circles show 850 and 450 micron sensitivity, respectively.
- 450 micron data were convolved so that they have 14" aperture
- Note that some projects are still ongoing

Sensitivity of I

Sensitivity of POL-2 maps in Stokes I vs. PI

$\begin{array}{cc}10^{0} \quad & 10^{1} \\ \text { Sensitivity of } \boldsymbol{I}\end{array}$

- Green and brown circles show 850 and 450 micron sensitivity, respectively.
- 450 micron data were convolved so that they have 14" aperture
- Note that some projects are still ongoing

Sensitivity of POL-2 maps in Stokes I vs. PI

- Green and brown circles show 850 and 450 micron sensitivity, respectively.
- 450 micron data were convolved so that they have 14" aperture
- Note that some projects are still ongoing

Ophiuchus A

Ophiuchus A star-forming region

Ophiuchus A star-forming region

Data Inspection: Ophiuchus A, Stokes I

Data Inspection: Ophiuchus A, Stokes I

Data Inspection: Polarized Intensity, PI

Results

Maps

B-fields traced by 850 micron observations

What are presented here?

- Color image: Polarized intensity, PI w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes I
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length to see directions

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization
the image $=850$ micron Polarized Intensity, $P I=\sqrt{Q^{2}+U^{2}}$

B-fields traced by 450 micron observations

What are presented here?

- Color image: Stokes I intensity w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes 1
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length to see directions

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization
the image $=450$ micron Stokes I intensity

Polarization angles observed at the dual-bands

B-fields traced by 450 um vs. 850 um

What are presented here?

- Color image: 450 um Stokes | intensity w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes I
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization

Well-aligned B-fields at the peak and periphery $\Rightarrow I P$ model is reasonable

B-fields traced by 450 um vs. 850 um

What are presented here?

- Color image: 450 um Stokes | intensity w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes I
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization

Well-aligned B-fields at the peak and periphery $\Rightarrow I P$ model is reasonable Coherent and incoherent patterns are identified in each band.

Polarization angles observed at the dual-bands

B-fields traced by 450 um vs. 850 um

What are presented here?

- Color image: 450 um polarized intensity, PI, w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes I
_ "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization
the image $=450$ micron Polarized intensity, $P I=\sqrt{Q^{2}+U^{2}}$

B-fields traced by 450 um vs. 850 um

What are presented here?

- Color image: 450 um polarized intensity, PI, w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes I
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization
the image $=450$ micron Polarized intensity, $P I=\sqrt{Q^{2}+U^{2}}$

B-fields traced by 450 um vs. 850 um

Excluding non-parallel vectors \Rightarrow Excluding line of sight where dual bands tracing different temperature gas

B-fields traced by 450 um vs. 850 um

What are presented here?

- Color image: 450 um Stokes | intensity w. pixel size $=12^{\prime \prime}$
- Contour: 90, 95, 99\% percentile of Stokes I
- "Vectors": rotated 90 deg to see B field directions
- "Vectors" are shown with identical length, Green: 850 mic, Brown: 450 mic

How vectors are selected?

- A threshold of $I / \Delta I>10$ and $P I / \Delta P I>3$ so as not to miss intrinsically-weak polarization

B-fields traced by 450 um vs. 850 um

Comparison with SOFIA's 89 and 154 micron results

BISTRO 450 micron

effective beam size~8"

Santos et al. 2019, ApJ September 10 issue

SOFIA 154 micron beam size $=13.6^{\prime \prime}$

Well-polarized in low-density and well-illuminated cloud's periphery Less-polarized in high-density and less-illuminated cloud's peak

Polarization fractions and pol. spectral index

P observed in submm emission polarimetry

$P_{\nu}=p_{\text {dust }, \nu} \cdot R_{\nu} \cdot F_{\nu} \cdot \cos ^{2} \gamma$

$p_{\text {dust }, \nu}:$ Dust properties - size, shape, composition Voshchinnikov \& Hirashita 2014
R_{ν} : Grain alignment efficiency w.r.t. local B fields Goodman 1992; Whittet et al. 2008; Hoang \& Lazarian 2014
F_{ν} : Depolarization from 2 (or multi-) layers along I.o.s.
e.g., $F=\frac{P}{P_{1}+P_{2}}$ where $P^{2}=P_{1}^{2}+P_{2}^{2}+2 P_{1} P_{2} \cos 2 \Delta \psi$ for 2 layers Myers \& Goodman 1991; Jones et al.1992, 2015; Planck 2015 XX, 2016 XXXIIII
$\cos ^{2} \gamma: B$-field geometry (where γ is w.r.t. p.o.s.) Planck 2015 XX, 2016 XXXIIII

P observed in submm emission polarimetry

$p_{\text {dust }, \nu}:$ Dust properties - size, shape, composition Voshchinnikov \& Hirashita 2014
R_{ν} : Grain alignment efficiency w.r.t. local B fields Goodman 1992; Whittet et al. 2008; Hoang \& Lazarian 2014
F_{ν} : Depolarization from 2 (or multi-) layers along I.o.s.
e.g., $F=\frac{P}{P_{1}+P_{2}}$ where $P^{2}=P_{1}^{2}+P_{2}^{2}+2 P_{1} P_{2} \cos 2 \Delta \psi$ for 2 layers

Myers \& Goodman 1991; Jones et al.1992, 2015; Planck 2015 XX, 2016 XXXIIII
Excluding non-parallel vectors \Rightarrow Excluding line of sight where dual bands tracing different temperature gas

450 um polarization fraction vs. 850 um p.f.

How vectors are selected?

- $I / \Delta I>10$ and $P I / \Delta P I$ >3, and vectors whose directions agree within errors

450 um polarization fraction vs. 850 um p.f.

How vectors are selected?

- $\mid / \Delta I>10$ and $P I / \Delta P I$ >3, and vectors whose directions agree within errors

Polarization spectra

BISTRO measurements toward Ophiuchus A reconciles with VM2012, but shallower than their results. Could be flat in cloud's periphery?

Summary and future works

450 micron observations: methodology

\& The 3rd generation instrumental Polarization (IP) model of the telescope is verified via scientific analysis

- The new capability allows to explore B-field structure towards the innermost dense regions with an angular resolution of $7^{\prime \prime}$

First look of Ophiuchus A 450 micron data

- Polarization Angles: Caught the B-field structure down to ~ 1 e3 AU scale - corresponding to $N \sim 1 \mathrm{e} 24 \mathrm{~cm}^{-2}$ region - which maintains coherency from the pc-scale one.
- Polarization Fractions: Observed polarization properties may be explained w. Radiative Alignment Torque paradigm. But, "What causes the anti-correlation between P and N ?" and "What is a general pol. spectrum?" may be studied using pol. spectra(um).

