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Why we are interested in flux variability?
• The variability of the protostellar disk accretion will be important to understand 

the evolution of the envelope and disk. 

• Protostellar luminosity problem (e.g., Kenyon+ 1990; Dunham+ 2010) 
← variable protostellar accretion rate (episodic accretion) 

• The mass accretion rates are high in the early stages of protostellar evolution 
(e.g., Whitworth & Ward-Thompson 2001; Schmeja & Klessen 2004). But, direct observations 
at optical or near-IR variability are very challenging (∵ heavily embedded in 
optically thick, dense envelopes). 

• Fortunately, indirect observations at sub-mm wavelengths are achievable. 
∵  Most of emission by the accretion energy appears in far-IR to sub-mm 
wavelengths by reprocessing through the protostellar envelope (Johnstone+ 2013).



Previous observational results

Hillenbrand & Findeisen 2015 

• The Majority of accretion variability observations have so far 
been carried out in the evolved stages of pre-main-sequence 
stars.  

• A large optical brightness increase of a factor of ten or more observed in 
FU Orionis (e.g., Herbig 1977; Hartmann & Kenyon 1996) or EX Lupi (e.g., 

Herbig 2008; Aspin+ 2010) 



• Recently, a few outbursts from deeply embedded protostellar objects have 
been reported. 

• About a-factor-of 1.5 increase at 850 μm toward Class I protostar EC53 (Yoo+ 2017)  

• About a-factor-of-2 increase at 350/450 μm toward Class 0 source HOPE 383 
(Safron+ 2015)  

•  Strong, declining light curve over the course of 16 months in HOPS 358 (Mairs+ 
2018) 

• Also, a factor of 4.2 increase in 870 μm continuum interferometric flux in a high-
mass protostellar system NGC 6334I-MM1 (Hunter+ 2017)

EC 53 discovered by Yoo+ 2017

Mairs+ 2018HOPS 358



Synergy
• The Transient team found that ∼10% of deeply embedded 

protostars display varying flux at the level of 5%–10% per year. 
However, the nearby regions that they studied are mostly 
forming low-mass stars.

This  WorkSCOPE 
data

Transient 
method



SCOPE survey: Observations
• “SCUBA-2 Continuum Observations of Pre-protostellar Evolution” 

• begun in December 2015 and completed in July 2017 

• 850 μm; SCUBA-2 sub-mm bolometer at the 15m JCMT (FWHM = 
14.1")   cf. Planck: 5' 

• CV Daisy mode (Mapping size of diameter ∼ 12’) 

• Observations under grade 3/4 weather condition with 225 GHz 
opacities between 0.1–0.15 

• First data reduction: filtering out scales larger than 200" on a 4" pixel 
scale



JCMT-SCOPE Survey: Targets

SCOPE sources (magenta dots) selected from 13188 PGCCs (black dots)   
(Liu+ 2018)

850 GHz Planck map

• Main aim: Statistical study the initial conditions occurring during 
star formation across a wide range of environments 

• Source selection (~1200 PGCCs): 
- high column density PGCCs  
(> 1 x 1021 cm-2 in Planck meas.) 
- randomly selected lower column  
density clumps at high latitudes  
(> 5 x 1020 cm-2 in Planck meas.) 

• For about 3/5 of the SCOPE sample (Planck Collaboration+ 2016): 
- About 70% among them are concentrated within 1 kpc while the others 
are widely distributed at up to ∼8 kpc, with an average angular size of ∼8'. 
- The mass range is from 0.1 M⦿ to 105 M⦿.



• The SCOPE survey done three times separate 
observations for some (< 30) of PGCCs which seem to 
contain massive clumps (with multiple substructures) in 
order to obtain deep images of high-mass star forming 
regions as well as to detect large flux variation events. 

• See Liu+ 2018 for detailed description of the survey and Eden+ 2019 for 
information of the first data release and the catalog of compact 
sources resolved with the JCMT.



12 SCOPE fields: CO-added images

In this study, we selected 12 PGCC fields in the first
quadrant of the Galactic plane that are moderately bright and
contain a relatively large number of clumps.18 PGCCs are
written using the acronym “PGCCs” in the text. These regions
span the Galactic longitude range of 14°<l<36°and are
located at heliocentric distances from ∼1.5 to 17kpc (Table 1).
The three observations of each field were not carried out with a
regular cadence and, therefore, had intervals spanning three
weeks to 13 months. The total exposure time to complete each
epoch is 15.4 minutes on average, and the median and
maximum of exposure times per pixel are ∼55 and ∼200 s,
respectively. Each image was smoothed with a Gaussian kernel
of 8″FWHM (twice the pixel size) to reduce pixel-to-pixel
noise. Thus, the final images shown in this paper have an
angular resolution of 16 2 FWHM after smoothing.

3. Data Reduction

The default 850 mN absolute flux calibration produced by the
data reduction pipeline at the JCMT yields a 5%–10% uncertainty
in pointlike calibrator sources over weather bands 1 through 4
(Dempsey et al. 2013; Mairs et al. 2017b). Therefore, to detect a
3 rmsT change in the peak flux of a source, the brightness variation
would need to be at least 15%–30%. Simulations (e.g., Bae et al.
2014; Vorobyov & Basu 2015) as well as JCMT Transient Survey
observations (Mairs et al. 2017a; Johnstone et al. 2018), however,
suggest that less dramatic flux variations are more common. In
order to increase detection reliability, it is advantageous to calibrate
the flux in a relative sense using the method presented by Mairs
et al. (2017b). In this way, it is possible to reduce the (relative) flux
uncertainty to 2%–3%, which allows for statistically significant
measurements of ∼6%–10% flux changes.
In our implementation of the relative flux calibration scheme,

we restricted the sources with high (>25) signal-to-noise ratios
(S/Ns; see Section 4.1 for details). However, unlike the
Transient Survey procedure, we did not require that the sources
are compact. In comparing the source fluxes of different

Figure 1. Co-added images for the 12 fields observed by the SCOPE survey. Each image is cropped using a circle with a radius of 370″. The field name is displayed at
the top left of each image. The color bar is shown in a linear scale, ranging from −30mJy beam 1� (black) to the value in parentheses at the top right of each image.
White circles are marked to help to locate the outliers described in Section 4, and the number assigned to each circle is from Table 3.

18 The definition of “clump” is ambiguous. In this paper, SCOPE clumps
resolved in the JCMT images are at various distances (see Table 1) and can
contain substructures that are visible at higher resolution. The SCOPE clumps
shown in this paper encompass masses from tens of solar masses to thousands
of solar masses, spanning the range of cores to clouds. For simplicity, we refer
to all these objects as clumps.
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angular resolution 
of 16.2 FWHM  
after smoothing 



12 SCOPE fields: Information

epochs, we checked that the locations of most peaks remain
within the nominal 2″–6″uncertainty of the JCMT pointing; a
typical difference is ∼4″. Further, we applied an image
registration technique. We used the IDL/SUBREG procedure19

and derived offsets (Δra and Δdec) between different images.
The two-dimensional offsets ( ra

2
dec

2% � % � %( ) ( ) ) of our
SCOPE fields have a mean of 4″and a standard deviation of
2″. This is consistent with our previous, manual inspection. For
these reasons, in this research, the different peak positions in a
given clump area within the beam size, were assumed to
originate from the same source.

As with Mairs et al. (2017b), the peak flux values were
compared in order to determine the relative calibration. For
point sources, calibrating to the peak flux allows a single
number (the relative flux calibration) to be determined for each
epoch, independent of the many underlying physical aspects
responsible for the original calibration uncertainty. Sources of
calibration uncertainty include: a poor measurement of the sky
opacity, changed throughput of the instrument, or a slight focus
offset, the latter of which will contribute to a change in the
observed beam shape. For extended sources, determining the
relative calibration using only the peak flux introduces an
additional level of uncertainty since changes to the underlying
beam profile also produce changes in the expected flux of the
source. Despite this complication, Mairs et al. (2017b) and
Mairs et al. (2015) found that the peak flux of bright sources
embedded in extended emission are well-recovered and
consistent for data reduction methods similar to those used in
this study. Furthermore, we derived a robust uncertainty
associated with the relative flux calibration factor (RFCF;
calculated below) as an additional check on the validity of the
process.

In every observed field, each epoch was calibrated
individually and co-added to produce a deep, averaged image
(Figure 1). To achieve this, the PICARD package (Gibb et al.
2013) found in the STARLINK software (Currie et al. 2014) was
used. Although each co-added image was made by combining
three epoch images, the individual images were not very

accurately aligned. Therefore, we used the co-added image
only for the clump identification without getting into the details
of alignment. The peak flux density values used in the
following analysis were obtained from the individual epochs.
We identified submillimeter clumps in the co-added images

with the CLUMPFIND algorithm (Williams et al. 1994),
provided by STARLINKʼs CUPID package (Berry et al. 2007),
considering an rms noise level described in Section 3.1. There
are several parameters to be set, such as “FwhmBeam,”
“MinPix,” “MaxBad,” and “Tlow.”20 During the implementa-
tion, resultant clumps containing fewer pixels than the area
corresponding to the beam size (<MinPix) were discarded. In
addition, we excluded any clump if its peak is located beyond
370″from the central position of each map.21 Information
regarding the structure in each field, along with the derived
relative calibration factors, are listed in Table 1.
The relative flux calibration using the SCOPE data started by

assuming that none of the clumps are variable. We found stable
calibrator sources by an iterative method. From the relative flux
calibration derived using the stable sources, we achieved a
sensitivity that is sufficient to robustly detect a 10% flux
variation (see Section 3.2 for details). Then, we examined
whether non-calibrator sources are outliers and tested their
significance with respect to the observational uncertainty.

3.1. Measuring the Flux: Step 1

A robust rms noise measurement is important not only for
identifying clumps but for assessing the significance of their
flux variability. However, the rms noise level of a constant

Table 1
Fields and Epochs

Central Positiona Three Epochs Time Intervalsb Distance(s)c

Field (h:m:s) (d:m:s) (yyyy mm dd) (day) (kpc)

G14.14−0.55 18:18:11.50 −16:55:29.05 2016 Apr 102017 May 102017 May 27 395 17 1.5
G14.47−0.20 18:17:31.80 −16:28:00.46 2016 Apr 92017 May 112017 Jun 2 397 22 3.1 (11.5)
G14.71−0.19 18:17:59.80 −16:14:41.16 2016 Apr 92017 May 102017 Jun 2 396 23 3.1
G15.61−0.48 18:20:48.40 −15:35:41.29 2016 Apr 102017 May 112017 Jun 2 396 22 1.8 and 16.9
G23.68+0.57 18:32:23.20 −07:57:39.50 2016 Apr 112017 May 102017 Jun 3 394 24 5.8
G23.97+0.51 18:33:09.20 −07:43:48.16 2016 Apr 112017 May 122017 Jun 4 396 23 5.8
G24.04+0.26 18:34:10.40 −07:47:05.86 2016 Apr 112017 May 102017 Jun 2 394 23 7.8
G24.49−0.52 18:37:48.10 −07:44:45.61 2016 Apr 112017 May 122017 Jun 2 396 21 11.3
G25.68−0.14 18:38:39.10 −06:30:49.20 2016 Apr 112017 May 92017 May 27 393 18 10.2 (7.4)
G26.17+0.13 18:38:34.70 −05:57:20.53 2016 Apr 112016 Aug 302017 Jun 4 141 278 7.6
G33.72−0.02 18:52:55.20 +00:41:26.00 2016 Apr 122016 Jul 222017 May 27 101 309 6.5 (2.2)
G35.49−0.31 18:57:12.90 +02:07:52.72 2016 Apr 132016 Jun 72017 May 27 55 354 2.7 (3.2 and 10.3)

Notes.
a Equatorial coordinates, R.A. and decl. (J2000).
b Time intervals between the first and second epochs and between the second and third epochs.
c Distances are obtained from (Urquhart et al. 2018, see also references therein). For fields having clumps at various distances, we give the distance of the majority of
clumps along with the value(s) of the minority in parenthesis, or, if they are almost equal numbers, two values with the conjunction “and.”

19 http://www.stsci.edu/~mperrin/software/sources/subreg.pro

20
“FwhmBeam” defines the FWHM size of the JCMT beam in pixels, which

corresponds to 4.05 for our final images. “MinPix” is the smallest number of
pixels which a clump can have; we used a value of 13 as that corresponds to the
area of a circle with a diameter equal to the (post-smoothing) beam FWHM.
“MaxBad” is the maximum fraction of blank pixels that can be contained in a
clump, which is set to zero. “Tlow” defines the lowest contour level to
consider; we use 3×rms noise. A detailed description of the parameters is given
at http://starlink.eao.hawaii.edu/docs/sun255.htx/sun255ss5.html.
21 This corresponds to the radius of the images in Figure 1. The maps are
shaped like an uneven circle of which the radius extends from ∼6 5 to ∼8′.
Near the edges of the images, the fields were much less exposed and the
coverage is uneven from epoch to epoch.
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Need for Relative Flux calibration
• Telescope pointing uncertainty: 2-6” 

• Default absolute flux calibration uncertainty for SCUBA-2 images:  
~ 5-10%  

• References: Dempsey+ 2013; Mairs+ 2017b 

• To detect a 3 σrms change in the peak flux of a source, the brightness 
variation would need to be at least 15%–30%. 

• But, less dramatic flux variations are more common (e.g., Bae+ 2014; 

Vorobyov & Basu 2015; Mairs+ 2017a; Johnstone+ 2018). 

• In order to increase detection reliability, We performed additional 
relative flux calibration using the method of Mairs+ 2017b. 



Data Analysis
• Make data arrays to have same grid coordinates (wcsaslign in STARLINK) 

• Smoothing using a Gaussian kernel with FWHM = 2 px (gausmooth in STARLINK)  
(finally, FWHM = 16.2ʺ) 

• Make a co-added image (picard MOSAIC JCMT IMAGES in STARLINK) 

• Estimate RMS noise levels as a function of exposure times in areas of no or 
very little emission for each epoch image 

• Find clumps using the co-added image (findclump in STARLINK: method= 
clumpfind) and remove if a clump peak is located beyond 370ʺ from the 
central position  

• Apply relative flux calibration and then read peak fluxes from three epochs  

• Check clumps showing somewhat higher SDmeas/SDfid



Clumpfinding & relative flux calibration
• We found clumps in the co-added image.  

:only sources having a mean peak flux ≥ 250 mJy/beam 
(~25 S/N in a single epoch; noise ∼10 mJy/ beam)  

• We used any clumps having  
σstd,meas/σstd,fid < 1.7 for calibration. 

• We derived a relative flux calibration factor 
(RFCF) for each epoch and then each epoch 
data were divided by RFCF.  

• The relative calibration steps were repeated 
using a clipping process to identify a set of 
stable calibrators.

Johnstone+ 2018

velocity (CV) daisy observation,22 (the mode we employed in
the SCOPE survey) is not uniform over the entire field. Since
SCUBA-2 generates a map of the exposure time for each
mapping field, we were able to use this map to characterize the
rms noise at different positions in the field. We measured the
rms noise level as a function of the exposure time in areas with
no astronomical signal using data from each epoch. The rms
noise levels showed gradual changes (almost flat) at exposure
times larger than ∼50 s and increase sharply at shorter
exposure times (see Figure 2). By design, most pixels in the
latter case are located near the edge of the uncropped images,
so the data points with exposure times shorter than ∼50 s are
insignificant for our analysis. We generated a best-fit noise
profile for each epoch (curves in the top panel of Figure 2)
using a simplified equation of the expected noise level (y)
y c c t1 2� � , where t indicates exposure time. In the
exposure time range of 50–200 s, we took the average of the
best-fit noise profiles of the individual epochs. The average
noise level was then scaled down by a factor of 3 to account
for the co-adding of the three epochs. Finally, this value was
used to identify significant clumps in the co-added image.
Though each image has the same exposure time, the data
quality also depends on the amount of precipitable water vapor
in the sky during the observations as well as on the elevation of
the field. As shown in Figure 2, however, the data points over
the three epoch are consistent, implying that the data quality is
comparable from epoch to epoch. We measured the rms noise
values for each of the 12 co-added images in order to perform
clump identification. For the 12 co-added images, the averaged

mean value of the resultant rms noise levels for finding clumps
is ∼4mJy beam 1� . In a single epoch image, the rms noise
level reaches ∼8mJy beam 1� in the central area with the
longest exposure time.

3.2. Measuring the Flux: Step 2

We measured the peak flux F ie ( ) for each clump i and epoch e.
We denote the mean peak flux over the three epochs as F im ( ).
The peak flux measurements are robust as the 8″Gaussian
smoothing mitigates pixel-to-pixel noise variations and the peak
position uncertainty from epoch to epoch is less than beam size.
In addition, we selected clumps with F i 250m .( ) mJy beam 1�

for this analysis, which is ∼25S/N in a single epoch (noise
∼10mJy beam 1� ). To find stable calibrator sources for relative
flux calibration, we first assumed that all clumps are not variable.
In each epoch e, we derived a RFCF as follows:

F c F c

n
RFCF , 1c

n
0 e m

c

c�
� �

( ) ( )
( )

where c denotes a calibrator, and nc is the number of calibrators
per field. Each epoch image was divided by its RFCF in order
to calibrate the images relative to one another. From these
relative flux calibrated images, we remeasured the peak fluxes
in each epoch and compared the standard deviation, istd,measT ( ),
of the clump fluxes with a fiducial standard deviation model,

istd,fidT ( ). The fiducial standard deviation model characterizes
the uncertainty in a relative flux calibrated image based on the
rms noise ( irmsT ( )) and the relative flux calibration uncertainty
itself (u ;cal see Johnstone et al. 2018 for further details).

istd,fidT ( ) is calculated as follows:

i i u F i , 2std,fid rms
2

cal m
2T T� � q( ) ( ) ( ( )) ( )

where ucal is

u
c F c

n 1
. 3c

n

cal
1 std,meas

2
m

2

c

c� T
�

�
�

( ) ( )
( )

Here, irmsT ( ) is the mean value of the three epoch noise levels
shown in Table 3, and ucal is given in the last column of
Table 2.
The relative calibration steps were repeated using a clipping

process to identify a set of stable calibrators. After applying
the relative flux conversions for each epoch, we compared
the expected uncertainty for each source ( istd,fidT ( )) with the
measured value ( istd,measT ( )). As discussed in Section 4.1, with
only three measurements, we expected 1.7std,meas std,fidT T� q ,
which corresponds to a 95% of confidence level if there is no
intrinsic variability. The numbers of identified clumps,
calibrator sources, outliers, the RFCF at each epoch, and
ucalare listed in Table 2 (see Section 4.1 for details on the
outliers). Figure 3 shows histograms of the normalized RFCFs
(normalized to the first epoch) and associated uncertainties.
The normalized RFCFs were used to moderate the effects of
small number statistics. The applied RFCFs were within the
nominal flux calibration uncertainty of SCUBA-2 data at
850 mN (Dempsey et al. 2013; Mairs et al. 2017b). The median
relative calibration uncertainty (ucal) was found to be ∼3.6%,
which is slightly higher than what the Transient Survey team
achieved (∼2%). This slight increase in the relative calibration
uncertainty is primarily due to two effects: the lower brightness

Figure 2. Top:example of the rms noise as a function of exposure time. Black
diamonds, green crosses, and red pluses represent (in order) the three epochs
observed of the G14.14−0.55 field. For the rms noise calculation, we only used
bins where there are more than 200 pixels (dashed gray line in the bottom
panel). The best-fit noise profiles t1_ , where t is the exposure time, are
marked. Their colors match the data points. Bottom:the number of pixels as a
function of exposure time.

22 http://www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/
observing-modes/
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velocity (CV) daisy observation,22 (the mode we employed in
the SCOPE survey) is not uniform over the entire field. Since
SCUBA-2 generates a map of the exposure time for each
mapping field, we were able to use this map to characterize the
rms noise at different positions in the field. We measured the
rms noise level as a function of the exposure time in areas with
no astronomical signal using data from each epoch. The rms
noise levels showed gradual changes (almost flat) at exposure
times larger than ∼50 s and increase sharply at shorter
exposure times (see Figure 2). By design, most pixels in the
latter case are located near the edge of the uncropped images,
so the data points with exposure times shorter than ∼50 s are
insignificant for our analysis. We generated a best-fit noise
profile for each epoch (curves in the top panel of Figure 2)
using a simplified equation of the expected noise level (y)
y c c t1 2� � , where t indicates exposure time. In the
exposure time range of 50–200 s, we took the average of the
best-fit noise profiles of the individual epochs. The average
noise level was then scaled down by a factor of 3 to account
for the co-adding of the three epochs. Finally, this value was
used to identify significant clumps in the co-added image.
Though each image has the same exposure time, the data
quality also depends on the amount of precipitable water vapor
in the sky during the observations as well as on the elevation of
the field. As shown in Figure 2, however, the data points over
the three epoch are consistent, implying that the data quality is
comparable from epoch to epoch. We measured the rms noise
values for each of the 12 co-added images in order to perform
clump identification. For the 12 co-added images, the averaged

mean value of the resultant rms noise levels for finding clumps
is ∼4mJy beam 1� . In a single epoch image, the rms noise
level reaches ∼8mJy beam 1� in the central area with the
longest exposure time.

3.2. Measuring the Flux: Step 2

We measured the peak flux F ie ( ) for each clump i and epoch e.
We denote the mean peak flux over the three epochs as F im ( ).
The peak flux measurements are robust as the 8″Gaussian
smoothing mitigates pixel-to-pixel noise variations and the peak
position uncertainty from epoch to epoch is less than beam size.
In addition, we selected clumps with F i 250m .( ) mJy beam 1�

for this analysis, which is ∼25S/N in a single epoch (noise
∼10mJy beam 1� ). To find stable calibrator sources for relative
flux calibration, we first assumed that all clumps are not variable.
In each epoch e, we derived a RFCF as follows:

F c F c

n
RFCF , 1c

n
0 e m

c

c�
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( ) ( )
( )

where c denotes a calibrator, and nc is the number of calibrators
per field. Each epoch image was divided by its RFCF in order
to calibrate the images relative to one another. From these
relative flux calibrated images, we remeasured the peak fluxes
in each epoch and compared the standard deviation, istd,measT ( ),
of the clump fluxes with a fiducial standard deviation model,

istd,fidT ( ). The fiducial standard deviation model characterizes
the uncertainty in a relative flux calibrated image based on the
rms noise ( irmsT ( )) and the relative flux calibration uncertainty
itself (u ;cal see Johnstone et al. 2018 for further details).

istd,fidT ( ) is calculated as follows:
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Here, irmsT ( ) is the mean value of the three epoch noise levels
shown in Table 3, and ucal is given in the last column of
Table 2.
The relative calibration steps were repeated using a clipping

process to identify a set of stable calibrators. After applying
the relative flux conversions for each epoch, we compared
the expected uncertainty for each source ( istd,fidT ( )) with the
measured value ( istd,measT ( )). As discussed in Section 4.1, with
only three measurements, we expected 1.7std,meas std,fidT T� q ,
which corresponds to a 95% of confidence level if there is no
intrinsic variability. The numbers of identified clumps,
calibrator sources, outliers, the RFCF at each epoch, and
ucalare listed in Table 2 (see Section 4.1 for details on the
outliers). Figure 3 shows histograms of the normalized RFCFs
(normalized to the first epoch) and associated uncertainties.
The normalized RFCFs were used to moderate the effects of
small number statistics. The applied RFCFs were within the
nominal flux calibration uncertainty of SCUBA-2 data at
850 mN (Dempsey et al. 2013; Mairs et al. 2017b). The median
relative calibration uncertainty (ucal) was found to be ∼3.6%,
which is slightly higher than what the Transient Survey team
achieved (∼2%). This slight increase in the relative calibration
uncertainty is primarily due to two effects: the lower brightness

Figure 2. Top:example of the rms noise as a function of exposure time. Black
diamonds, green crosses, and red pluses represent (in order) the three epochs
observed of the G14.14−0.55 field. For the rms noise calculation, we only used
bins where there are more than 200 pixels (dashed gray line in the bottom
panel). The best-fit noise profiles t1_ , where t is the exposure time, are
marked. Their colors match the data points. Bottom:the number of pixels as a
function of exposure time.

22 http://www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/
observing-modes/
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velocity (CV) daisy observation,22 (the mode we employed in
the SCOPE survey) is not uniform over the entire field. Since
SCUBA-2 generates a map of the exposure time for each
mapping field, we were able to use this map to characterize the
rms noise at different positions in the field. We measured the
rms noise level as a function of the exposure time in areas with
no astronomical signal using data from each epoch. The rms
noise levels showed gradual changes (almost flat) at exposure
times larger than ∼50 s and increase sharply at shorter
exposure times (see Figure 2). By design, most pixels in the
latter case are located near the edge of the uncropped images,
so the data points with exposure times shorter than ∼50 s are
insignificant for our analysis. We generated a best-fit noise
profile for each epoch (curves in the top panel of Figure 2)
using a simplified equation of the expected noise level (y)
y c c t1 2� � , where t indicates exposure time. In the
exposure time range of 50–200 s, we took the average of the
best-fit noise profiles of the individual epochs. The average
noise level was then scaled down by a factor of 3 to account
for the co-adding of the three epochs. Finally, this value was
used to identify significant clumps in the co-added image.
Though each image has the same exposure time, the data
quality also depends on the amount of precipitable water vapor
in the sky during the observations as well as on the elevation of
the field. As shown in Figure 2, however, the data points over
the three epoch are consistent, implying that the data quality is
comparable from epoch to epoch. We measured the rms noise
values for each of the 12 co-added images in order to perform
clump identification. For the 12 co-added images, the averaged

mean value of the resultant rms noise levels for finding clumps
is ∼4mJy beam 1� . In a single epoch image, the rms noise
level reaches ∼8mJy beam 1� in the central area with the
longest exposure time.

3.2. Measuring the Flux: Step 2

We measured the peak flux F ie ( ) for each clump i and epoch e.
We denote the mean peak flux over the three epochs as F im ( ).
The peak flux measurements are robust as the 8″Gaussian
smoothing mitigates pixel-to-pixel noise variations and the peak
position uncertainty from epoch to epoch is less than beam size.
In addition, we selected clumps with F i 250m .( ) mJy beam 1�

for this analysis, which is ∼25S/N in a single epoch (noise
∼10mJy beam 1� ). To find stable calibrator sources for relative
flux calibration, we first assumed that all clumps are not variable.
In each epoch e, we derived a RFCF as follows:

F c F c

n
RFCF , 1c

n
0 e m

c

c�
� �

( ) ( )
( )

where c denotes a calibrator, and nc is the number of calibrators
per field. Each epoch image was divided by its RFCF in order
to calibrate the images relative to one another. From these
relative flux calibrated images, we remeasured the peak fluxes
in each epoch and compared the standard deviation, istd,measT ( ),
of the clump fluxes with a fiducial standard deviation model,

istd,fidT ( ). The fiducial standard deviation model characterizes
the uncertainty in a relative flux calibrated image based on the
rms noise ( irmsT ( )) and the relative flux calibration uncertainty
itself (u ;cal see Johnstone et al. 2018 for further details).

istd,fidT ( ) is calculated as follows:

i i u F i , 2std,fid rms
2

cal m
2T T� � q( ) ( ) ( ( )) ( )

where ucal is

u
c F c

n 1
. 3c

n

cal
1 std,meas

2
m

2

c

c� T
�

�
�

( ) ( )
( )

Here, irmsT ( ) is the mean value of the three epoch noise levels
shown in Table 3, and ucal is given in the last column of
Table 2.
The relative calibration steps were repeated using a clipping

process to identify a set of stable calibrators. After applying
the relative flux conversions for each epoch, we compared
the expected uncertainty for each source ( istd,fidT ( )) with the
measured value ( istd,measT ( )). As discussed in Section 4.1, with
only three measurements, we expected 1.7std,meas std,fidT T� q ,
which corresponds to a 95% of confidence level if there is no
intrinsic variability. The numbers of identified clumps,
calibrator sources, outliers, the RFCF at each epoch, and
ucalare listed in Table 2 (see Section 4.1 for details on the
outliers). Figure 3 shows histograms of the normalized RFCFs
(normalized to the first epoch) and associated uncertainties.
The normalized RFCFs were used to moderate the effects of
small number statistics. The applied RFCFs were within the
nominal flux calibration uncertainty of SCUBA-2 data at
850 mN (Dempsey et al. 2013; Mairs et al. 2017b). The median
relative calibration uncertainty (ucal) was found to be ∼3.6%,
which is slightly higher than what the Transient Survey team
achieved (∼2%). This slight increase in the relative calibration
uncertainty is primarily due to two effects: the lower brightness

Figure 2. Top:example of the rms noise as a function of exposure time. Black
diamonds, green crosses, and red pluses represent (in order) the three epochs
observed of the G14.14−0.55 field. For the rms noise calculation, we only used
bins where there are more than 200 pixels (dashed gray line in the bottom
panel). The best-fit noise profiles t1_ , where t is the exposure time, are
marked. Their colors match the data points. Bottom:the number of pixels as a
function of exposure time.

22 http://www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/
observing-modes/
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Results of Relative flux Calibration

limit used here for potential calibrators and the necessity to
allow extended sources as calibrators. These differences from
the Transient Survey are discussed in more detail below.

3.3. Differences in Methodology from the Transient Survey

We adopted the methods performed by the Transient Survey
team to investigate peak flux changes over time. However, the
SCOPE survey was not optimized for this type of work, so the
following alterations to the Transient Survey methodology
were applied.

First, our smoothing kernel size is slightly larger than that of the
Transient Survey team (8″as opposed to 6″). Second, we used the
CLUMPFIND algorithm while the Transient Survey team used
GAUSSCLUMPS (Stutzki & Guesten 1990). Both of these
algorithms provide almost the same results overall, but there are
some differences in complex areas of a given map. Third, we
applied a different set of criteria from the Transient Survey to
select clumps from the catalogs obtained by using each algorithm.
The Transient Survey team considered only sources which are
very bright ( 50 rmsT� ) and compact (effective radius assuming a
circular projected configuration 10� ´), and which appear in every
epoch. Alternatively, we included less bright ( 25 rmsT� ) sources

and more extended sources. Fourth, the calibrator selection
described above in this section differs from that of the Transient
Survey team due to the difference in the number of bright sources.
While we considered all the clumps to be potential calibrators at
the beginning and then selected the invariable clumps, the
Transient Survey team could be more selective as their fields
contain many compact, bright clumps for the calibration such that
the uncertainty from the noise was less than 5% (Mairs et al.
2017b). In spite of the differences in bright source selection for the
relative flux calibration, the procedure presented in this study is
sufficient to detect a flux variation of 10% ( u3 calq ).

4. Results

4.1. Analysis of Peak Flux Measurement

We identified 136 clumps with F 250m . mJy beam 1�

across the 12 fields. Figure 4 shows the std,measT / std,fidT as a
function of the mean peak flux density. Almost all clumps
(132/136; marked with filled symbols in the figure) show little
flux changes and are used as calibrators. Four outliers (open
symbols) in three different SCOPE fields were detected.

Table 2
Number of Clumps Found and Relative Calibration Information

All Clumps Found RFCF at Each Epoch
ucal

Field >250 mJy beam 1� Calibrators Outliers First Second Third (%)

G14.14−0.55 30 28 2 1.005 0.981 1.014 3.6
G14.47−0.20 19 19 0 1.014 0.953 1.033 4.5
G14.71−0.19 13 13 0 1.029 0.932 1.039 5.2
G15.61−0.48 6 6 0 0.994 0.995 1.010 1.8
G23.68+0.57 4 4 0 1.027 0.937 1.037 4.2
G23.97+0.51 3 3 0 1.005 0.988 1.010 2.8
G24.04+0.26 10 9 1 1.038 0.895 1.066 3.1
G24.49−0.52 4 4 0 1.025 0.981 0.995 4.9
G25.68−0.14 18 17 1 1.043 1.012 0.945 4.4
G26.17+0.13 6 6 0 1.085 0.902 1.013 3.4
G33.72−0.02 14 14 0 1.033 0.992 0.975 2.5
G35.49−0.31 9 9 0 1.056 0.948 0.996 1.7

Figure 3. Histograms of the RFCF and the relative calibration uncertainty, ucal, from Table 2. Values in the RFCF histogram were normalized to the first epoch for
each field, so only RFCFs derived for the other epochs are counted.
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4 Outliers

Johnstone et al. (2018) searched for submillimeter variability
in 1643 bright sources across eight star-forming regions using
the first 18-month data of monthly observations obtained by the
JCMT Transient Survey. Figure 2 of Johnstone et al. (2018) is
similar to Figure 4 in this paper. Their results of std,measT / std,fidT
are much more tightly constrained toward a value of 1. This is
mainly due to their larger set of data (10–15 epochs) per region.
EC53, a known variable source in Serpens Main (Hodapp
et al. 2012; Yoo et al. 2017), is an extreme outlier with a value
of std,meas std,fidT T � 5.6. We found no clump that shows similar,
exceptional variability in our data.

To analyze how significant the outlier detections are, we
constructed a simple statistical test of the null hypothesis that
there is no variability beyond the flux changes due to the
observational uncertainty. For 100,000 trials, we drew three
peak values (to represent three epochs) at random from a
normal distribution with a mean of a given peak value
and a standard deviation of std,fidT . We measured std,measT

from these three measurements, calculated std,measT / std,fidT for
each trial, and examined the probability density function of

std,measT / std,fidT . We found that the probability density function
depends only on the number of observational epochs. For the
three epoch case, the std,measT / std,fidT distribution has a mean
of 0.85 and a median of 0.83. std,meas std,fidT T � 1.7 and 3.1
give the cumulative probabilities of ∼95% and 99.99%,
respectively. 100% minus the cumulative probability indicates
the probability that the flux changes are simply due to the
observational uncertainty. All four outliers in Figure 4 have

2.3std,meas std,fid .T T , which corresponds to less than 0.5%.
(This result is equivalent to identifying outliers at least 2.8σ
from the mean in a normal distribution.) Therefore, they might
be candidate variable sources.
The four outliers are listed in Table 3. The parameter of

std,measT / std,fidT is a good, dimensionless indicator of flux
variability. For the outliers, std,measT / std,fidT is between 2.3 and
3.6. Compared with EC53, the outliers have much smaller

Figure 4. std,measT / std,fidT vs. Fmfor all identified clumps. Filled and open symbols are calibrators and outliers, respectively. A dashed line marks a threshold of 1.7 for
calibrator sources (see the text for more details). The number assigned to each outlier is also marked.

Table 3
Peak Flux of Outliers in 850 mN

Peak Positiona Fe at Each Epochb,c

# Field Namea R.A.(J2000) Decl. (J2000) First Second Third Fm
c

std,measT c
std,fidT c,d std,meas

std,fid

T
T

e

1 G14.14
−0.55

G14.143
−0.508

18:18:02.02 −16:53:57.09 317 (10) 397 (10) 378 (10) 364 42 16 2.6 (∼0.1%)

2 G14.14
−0.55

G14.210
−0.598

18:18:29.89 −16:52:57.05 257 (11) 243 (10) 306 (10) 269 33 14 2.4 (∼0.3%)

3 G24.04
+0.26

G24.008
+0.203

18:34:19.82 −07:50:29.89 281 (8) 213 (11) 293 (8) 263 43 12 3.6 (<0.01%)

4 G25.68
−0.14

G25.635
−0.126

18:38:31.32 −06:32:53.20 297 (9) 230 (8) 251 (11) 259 34 15 2.3 (∼0.5%)

Notes.
a Name contains each peak position in Galactic coordinates. It is determined from the epoch data with the highest peak flux.
b Values in parentheses are map noise levels.
c Units of mJy beam 1� .
d See Equation (2). For each source, the mean of noise levels at three epochs and ucal listed in Table 2 are used.
e Values in parentheses indicate how reliable the explanation that the flux change is due to the observational uncertainty is (see Section 4).
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cf. EC 53: SD/SDfid = 5.6 (Johnstone+ 2018)

values of std,measT / std,fidT . In addition, all four outliers are
relatively faint clumps (400 mJy beam 1� ). The outliers are
described below in more detail.

Figures 5 and 6 show the peak flux variations of the outliers
at 850 mN , which are approximately sixtimes the noise level.
While it is difficult to define the variability timescale with a
limited number of observations and an uneven observational
cadence, we analyzed the trend of peak fluxes. Outliers 1 and 4
showed clear differences between the first and the two
subsequent epochs. Outlier2 showed no significant flux
variations between the first two epochs separated by a year,
but a sudden flux increase is detected between the second and
third epochs separated by less than a month. Outlier3 showed a
clear difference in flux after the initial long time interval and
also after the later, shorter time interval. The fluxes measured in
the first and last epochs, however, were similar to one another.
The JCMT Transient Survey found that the majority of
variables uncovered have long-term (a number of years), rather
than short-term, variations (monthly-to-yearly timescales;
Johnstone et al. 2018), though only rare, extremely bright
events allow the survey to uncover variations within individual
epochs (Mairs et al. 2019). Further monitoring is required to
confirm such short-term variations.

4.2. Large-scale Bias Check

Thus far, the technique we used in this paper is to compare
the peak fluxes of different epochs for each clump after relative
flux calibration. However, it is well known that submillimeter
continuum map reconstruction often creates low-level, artifi-
cial, extended structures that may affect simple peak flux
measurements. Such complications are more likely to arise
across small crowded maps, such as those undertaken by
SCOPE, as compared with the large, sparser Transient Survey
fields. Thus, in this section we test whether the observed
brightness variations from the four candidate variables are truly
localized as expected for compact sources.
Thus, we aligned SCOPE images using the algorithm IDL/

SUBREG mentioned in Section 3 and made difference maps
using those epochs containing the minimum and maximum
peak flux values. Figure 7 shows the flux difference maps of
the four outlier candidates, zoomed in to localized areas of
2′×2′. For each source, there are three panels: brightest and
faintest epoch outlier images and their difference map. For
Outlier1, it appears that the majority of the flux change is
located at the peak position. Therefore, we can confirm that the
flux variation genuinely originates from the brightness of the
localized source. On the other hand, for the other three sources
(Outliers 2–4), between epochs the extended emission rises
along with the peak flux increase. This can be seen most clearly
in Outlier4. For Outlier2, there is a peaking-up trend above
the background change by ∼30mJy beam 1� , which is only
about half of the anticipated value from the peak flux analysis
alone. For Outlier3, there is an increase of about 60mJy beam 1�

over the background change. However, this trend does not peak at
the location of the source.
In summary, we find that three of the four candidate

variables (Outliers 2–4) are closely associated with large-scale
flux variations between epochs. As we do not expect to observe
large variations in the brightness of an extended structure in
star-forming regions and we are well aware of the likelihood of
artificial large-scale structure created during the map-making
process, we remove these three sources from any further
analysis. Outlier1 remains a “candidate” variable, although it
is not particularly “robust” (see Section 4.1).

Figure 5. Peak flux variations of the four selected outliers in Table 3. The
number assigned to each outlier is written in the top right corner. Symbols and
colors are described in Figure 4. The error bars represent std,fidT .

8

The Astrophysical Journal Supplement Series, 242:27 (12pp), 2019 June Park et al.

4 outliers of 136 clump peaks in 12 fields



Large Scale Bias Check

identify in this study were covered by the APEX Telescope
Large Area Survey of the Galaxy (ATLASGAL; Schuller et al.
2009). We, therefore, searched for ATLASGAL clumps near
the peak flux position of this outlier. Urquhart et al. (2018)
derived the distances and physical properties (including
evolutionary classification) of about 8000 ATLASGAL clumps
in Galactic disk in the Galactic longitude from 5° to 60°. The
ATLASGAL was conducted at 870 mN with a beam size of
19 2. The observing wavelength and beam size are comparable
to ours. Note that the ATLASGAL survey has a typical noise
level of 50–70mJy beam 1� , which is one order of magnitude
higher than that of the SCOPE survey. Outlier1 is associated
with ATLASGAL clump AGAL014.142−00.509 that has a

vLSR of 21.1kms 1� . The kinematic distance was estimated to
be 1.5kpc (Urquhart et al. 2018).
This clump seems to be deeply embedded in an IR dark

cloud filament. Urquhart et al. (2018) inferred Outlier1 to be in
a quiescent phase, because it is dark or weak at near- to far-IR
wavelengths. The flux variation in a quiescent (seemingly
starless) clump may sound contradictory. It can be explained,
however, by the presence of at least one undetected heavily
embedded (proto)star(s). For example, recent studies by Liu
et al. (2018b) using single-dish telescopes and Contreras et al.
(2018) using the Atacama Large Millimeter/submillimeter
Array (ALMA) detected high accretion rates in massive
quiescent cores, which are comparable to those found in

Figure 7. Flux difference maps of the four outliers at JCMT 850 mN . For each outlier, there are three images: (left) the outlier-brightest epoch image, (center) the
outlier-faintest epoch image, and (right) their difference map. White contours show a flux level of 230mJy beam 1� from the leftmost image. The outliers are marked
using 15″-radius dashed circles in cyan.
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The flux variation indeed 
originates from the 
brightness of the 
localized source.

These are probably 
caused by artificial 
large-scale structure. 
(∵ We do not expect to 
observe large variations 
in the brightness of an 
extended structure in 
star-forming regions)



One potential Variable Candidate
• Outlier 1: G14.143−0.508 in found in the G14.14−0.55 field 
• σstd,meas/σstd,fid = 2.6 

• matched with ATLASGAL clump AGAL014.142−00.509:  
vLSR = 21.1 km/s; d = 1.5 kpc (Urquhart+ 2015) 

• deeply embedded in an IR dark cloud filament, seemingly starless 
⇽ It can’t completely rule out presence of at least one undetected heavily 
embedded (proto)star(s). 

• We suggest that the detected flux change could potentially be caused 
by accretion variability.

Spitzer/IRAC 8 µm Spitzer/MIPS 24 µm Herschel 70 µm



• How to determine whether there is low- or high-mass star 
formation occurring? 

• Relationship between the bolometric luminosity and the 
envelope mass is useful (e.g., Molinari+ 2008; Urquhart+ 2014; 

Motte+ 2018). 

• Clump of Outlier 1 
:luminosity (≃ 37 L⦿)  
and the mass (≃ 23 M⦿) 
(Urquhart+ 2018) 
→ likely related to low- or  
intermediate- mass  
star formation

AA56CH01_Motte ARI 5 December 2017 18:5

a

b

F C
O

 (M
☉

 k
m

 s–1
  y

ea
r–1

)

Mcore (M☉)

Lbol (L☉)

2.0 M☉ 4.0 M☉ 8.0 M☉ 20.0 M☉ 50.0 M☉

M
en

v (
M

☉
)

10–1

10–2

10–2 100 102 104

100 101 102 103 104 105 10610–1

10–3

10–4

10–5

102

100

10–1

10–2

10–3

10–4

10–5

101

100

10–1

10–2

10–6

10–7

T *
 =

 2
2,

00
0 

K

0.08 M☉0.08 M☉ 0.2 M☉0.2 M☉

0.6 M☉0.6 M☉

4 M☉

8 M☉

20 M☉

50
M☉

Motte & André (2001)

Bontemps et al. (2010b)

Bontemps et al. (2010a)

van der Tak et al. (2000)

Motte & André (2001)

Bontemps et al. (2010b)

Bontemps et al. (2010a)

van der Tak et al. (2000)

Figure 5
Envelope mass of HMPOs/protostars with respect to their (a) outflow momentum (y axis) and (b) bolometric
luminosity (x axis). The outflow momentum correlation found for low-mass protostars ( pentagons; Bontemps
et al. 1996) holds for HMPOs (dots and triangles; Beuther et al. 2002b). This result suggests high-mass stars
form through protostellar accretion like low-mass stars but with an enhanced accretion rate. In panel a, the
location of high-mass protostars (with 5,000-AU envelopes; IR-quiet and IR-bright in cyan and red circles,
respectively; van der Tak et al. 2000, Bontemps et al. 2010b, Duarte-Cabral et al. 2013) favors a scenario
with decreasing accretion rates and intermittent accretion. Violet and cyan curves are evolutionary tracks of
Duarte-Cabral et al. (2013), with a rate multiplied by 10 during 10% of the protostellar lifetime. The
colored area represents the surface density predicted for protostars. The green curve separates high-mass
protostars from sources developing an HII region. Adapted from Beuther et al. (2002b) and Duarte-Cabral
et al. (2013) with permission. Abbreviations: HMPO, high-mass protostellar objects.
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Future Work red = 253 Stage 0/I YSO
s, yellow = 353 Stage II/

III YSO
s, orange = 100 ambiguous  (Povich+ 2016)

M
17 SW

ex W
ide Field (GLIM

PSE 8 um)

• The Transient expansion proposal  
has been submitted last month.  
“The JCMT Transient Survey: Fainter 
Objects, Higher Masses, Longer 
Timescales” (Herczeg et al.) 

• High-mass star forming regions will 
be studied.  
• M17 
• M17 SWex 
• S255 
• three fields in DR21

(RA, Dec)

ATLASGAL 870 um SCOPE 850 um



Summary
• Among the SCOPE 850 μm survey data, we investigated sub-mm flux-

variability of cold Planck sub-clumps (peak flux ≥ 250 mJy/beam) in 12 
fields.  

• We applied a relative flux calibration and achieved a calibration 
uncertainty of ∼3.6% on average.  

• Total of 136 clumps were identified in all fields. We found four outliers 
showing peak flux variations.  

• One of them is likely to be a potential variable candidate. The variations 
from the remains appear to be primarily due to large-scale contamination. 

• The flux change of the candidate may be associated with low- or 
intermediate-mass star formation assuming a distance of 1.5 kpc.


