A Comparison between Magnetic Field Directions Inferred from *Planck* and Starlight Polarimetry toward Gould Belt Clouds (Gu & Li 2019, ApJL, 871, 15)

> By Qilao Gu Supervisor: Hua-bai Li The Chinese University of Hong Kong JCMT Users Meeting 2019 2019.11.06

Outline

Data Sources

Results

- Stellar vs. Planck Inferred B-field Directions
- Stellar vs. Planck in the Cloud-field Alignment toward Gould Belt Clouds
- Connection between two alignment studies

■ 353 GHz Thermal Dust Polarization from *Planck*

- Initially at 4.8' and smoothed to 10' for high S/N

Starlight Polarization

- From Heiles (2000), 5747 of 9286 stars with S/N $p/\sigma_p > 3$

Spatial distribution

Results

- Stellar vs. Planck Inferred B-field Directions
- Stellar vs. Planck in the Cloud-field Alignment toward Gould Belt Clouds
- Connection between two alignment studies

Planck-starlight inferred B-field orientation offsets with increasing N_H

In general, the angle difference between starlight and *Planck* is small, mostly below 30° .

Overall trend: firstly decrease and then increase with increasing N_{H} . (Turning point: $N_{H} \sim 10^{22}$ cm⁻²)

When N_H is so high, the background stars become invisible and the visible stars are mostly in the foreground so the overlap decreases. Stellar feedback will also contribute to grow the offsets

Results

- Stellar vs. Planck Inferred B-field Directions
- Stellar vs. Planck in the Cloud-field Alignment toward Gould Belt Clouds
- Connection between two alignment studies

Bimodal distribution from *Li et al. (2013)*

Global cloud-field alignment (10 – 100 pc): mean B-field orientation and cloud orientation.

Clouds tend to be either parallel with or perpendicular to the mean B-field orientations.

Stellar vs. Planck in the Cloud-field Alignment toward Gould Belt Clouds

Use mean Q and U values of each part to derive corresponding mean B-field orientations.

Compare with cloud-field alignment resulted by Li et al. (2013).

x-axis (Li et al. (2013)): B-field orientations derived from starlight method

y-axis (this work): B-field orientations derived from *Planck*

Outliers: Orion and Perseus

B-field orientations histogram

B-field orientations traced by starlight has bimodal distribution: vectors with low fraction are mostly parallel with the cloud while those with high fraction are mostly perpendicular to the cloud.

Possible reasons:

 Low fraction group has more starlight data;
Planck (thermal dust emission) favors region with high polarized flux;

3. High fraction group shaped by stellar feedback (Goodman et al. (1990)).

Orion

-8 -

-12 -

DEC (degrees)

B-fields from starlight and Hertz (CSO) show agreement (Li et al. (2009)), but show disagreement with that from *Planck*.

Possible reason:

Planck traced an LOS dimension much larger than a core while CSO's beam is smaller than a core and for starlight the LOS scale could be controlled by stellar distance.

Results

- Stellar vs. Planck Inferred B-field Directions
- Stellar vs. Planck in the Cloud-field Alignment toward Gould Belt Clouds
- Connection between two alignment studies

Bimodal distribution from *Li et al. (2013)*

Global cloud-field alignment (10 – 100 pc): mean B-field orientation and cloud orientation.

Clouds tend to be either parallel with or perpendicular to the mean B-field orientations.

Structure-field alignment relation in *Planck XXXV*

Pixel size (0.1 – 1 pc): shows relation of local B-field orientation and local $N_{\rm H}$ contour.

 ξ -function:

- > 0 for parallel relation
- = 0 no preferred relative orientation
- < 0 for perpendicular relation

Overall trend of moving away from parallelism to perpendicularity with increasing $N_{\rm H}.$

PDF of $N_{\rm H}$ turns from log-normal to roughly a power law where gas turns gravitational bounded.

Gray region: $2 < A_v < 5$ (Kainulainen et al. (2009)), ξ lines are colored by the gray area above $\xi = 0$ (blue for negative, red for

Connection between two alignment studies

hollow symbols are not suitable for the comparison: Lupus is divided into Lupus I and Lupus II-VI in Li et al. (2013)

y = x panel: redder y = x - 90 panel: bluer

Two studies don't conflict with each other but show some agreements.

Results

- Stellar vs. Planck Inferred B-field Directions
- Stellar vs. Planck in the Cloud-field Alignment toward Gould Belt Clouds
- Connection between two alignment studies

- In general, B-field directions inferred from two methods agree well. The slight disagreement in low and extremely high N_H regions can be explained by: (a) the overlap of the LOS traced by two methods is more weighted with higher foreground N_H; (b) visible stars in extreme high N_H LOS are mostly in the foreground, which decreases the overlap of two methods; (c) stellar feedback affects the denser regions more.
- Based on *Planck* 353 GHz thermal dust polarization data, we repeat the global cloud-field alignment study carried out by *Li et al. (2013)* and find a good agreement with high-N_H data
- In the range of cloud contraction threshold density, $2 < A_v < 5$, where N_H PDFs turn from log-normal to roughly a power law, the local cloud-field alignment observed by *Planck XXXV* shows some agreements with the study of the glober cloud field stightment nd dinner!