Physical modeling of dust polarization spectrum by RAT alignment and disruption

Hyeseung Lee (KASI)

Thiem Hoang(KASI) Ngan Le Jungyeon Cho (CNU)

in submitted

Centrifugal force (F_c)

effective degree of grain alignment

No disruption

No disruption

JCMT Users Meeting, ASIAA, Taipei, 2019

$$P(\%) = 100 \times \left(\frac{I_{pol}}{I_{em}}\right)$$

For optically thin regime,

Planck function

Temperature distribution function which depends on the grain size and radiation strength **U**

No disruption

RATD

No disruption

RATD

INTRO RATs **RESUTS** SUMMARY

Planck data

Using the RAT alignment and RATD theory, we model the polarization of starlight and polarized thermal emission by aligned grains.

- 1. For the diffuse medium, the **optical/NIR polarization** is reduced due to the **disruption** of large grains into **smaller ones**.
- For polarized thermal emission, the P_{max} increases but the λ_{max} decreases with increasing U due to enhanced alignment of small grains → SOFIA/HAWC+
- When taking into account RATD, the variation of the polarization degree with U depends on the S_{max} of grain materials.
- Comparison with Planck data (2018), interstellar grains unlikely to have a compact structure with very high S_{max} perhaps a composite structure.
- 5. Our models of starlight polarization for high radiation intensity with RATD find that the K- λ_{max} qualitatively agree with observations toward SNe Ia.
- 6. Based on our results, we suggest that an important way to test RAT theory and RATD is to observe **polarization toward star-forming regions**.

Rotational disruption of dust grains by radiative torques in strong radiation fields

Thiem Hoang^{1,2*}, Le Ngoc Tram^{1,3,4}, Hyeseung Lee¹ and Sang-Hyeon Ahn¹

Massive stars, supernovae, ally show near- to mid-infra Early-phase observations in and dust polarization. The nance of small grains (size $a \le 0.05 \,\mu$ m) relative to large grains ($a \ge 0.1 \,\mu$ m) in the local environment of these strong radiation

DRAFT VERSION NOVEMBER 5, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0

PHYSICAL MODEL OF DUST POLARIZATION BY RADIATIVE TORQUE ALIGNMENT AND DISRUPTION AND IMPLICATIONS FOR GRAIN INTERNAL STRUCTURES

HYESEUNG LEE¹, THIEM HOANG^{1,2}, NGAN LE^{3,4}, AND JUNGYEON CHO^{1,5} ¹ Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea; thiemhoang@kasi.re.kr

Polarization by dust with RATD

⁴ Department of Space and Applications, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc

Viet, Hanoi, Vietnam

⁵ Chungnam National University, Daejeon 34134, Republic of Korea

Temperature Distribution

