### Chemical Modeling of Starless Cores ---- L1512



Lin et al. submitted



Sheng-Jun Lin 林聖鈞<sup>1</sup>, Laurent Pagani<sup>2</sup>, Shih-Ping Lai 賴詩萍<sup>1</sup>, Charlène Lefèvre<sup>3</sup>, and François Lique<sup>4</sup>

> <sup>1</sup>IoA, National Tsing Hua University, Taiwan <sup>2</sup>LERMA & UMR 8112 du CNRS, Observatoire de Paris, France <sup>3</sup>Institut de Radioastronomie Millimétrique, France <sup>4</sup>LOMC-UMR 6294, CNRS-Université du Havre, France





# Outline

- Introduction: Starless cores and Formation
- Deuterium Chemistry
- Analysis
- Summary

### Starless Core

- The earliest phase in star formation
- C-, S-bearing species are depleted
- N-bearing/Deuterated species are abundant
- High **Deuteration** fraction
  - [D]/[H] >> Cosmic [D]/[H]  $\approx 3.2 \times 10^{-5}$





### **Starless Core Formation**

#### **Question: Do starless cores form via slow or fast process?**



JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

(Bergin+2006)

### **Starless Core Formation**

#### **Question: Do starless cores form via slow or fast process?**



JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

(Bergin+2006)

## Deuterium Chemistry

- Starless [D]/[H] >> Cosmic [D]/[H] ≈ 3.2 × 10<sup>-5</sup>
- Deuterium fractionation is enhanced in the cold environment
- Spin states matter! e.g.,  $\Delta E(o-H_2 p-H_2) = 170 \text{ K}$



JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

# Solve the Time scale!

- 4 Key cation tracers:  $o-H_2D^+$ ,  $N_2H^+$ ,  $N_2D^+$ , DCO<sup>+</sup>
- The freeze-out process is dominated
- CO and N<sub>2</sub> are depleted and their abundances are constant



JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

## Analysis

Abundance Profiles (N<sub>2</sub>H<sup>+</sup>, N<sub>2</sub>D<sup>+</sup>, DCO<sup>+</sup>, o-H<sub>2</sub>D<sup>+</sup>)

#### **Chemical Modeling with the Deuterium Network**

Lifetime of L1512

CO &  $N_2$  Profiles

## Analysis

Multi-line Obs of the 4 tracers

**Density Profile** 

T<sub>kin</sub> Profile

1D Spherical Non-LTE Radiative Transfer With an Onion-shell Model

> Abundance Profiles (N<sub>2</sub>H<sup>+</sup>, N<sub>2</sub>D<sup>+</sup>, DCO<sup>+</sup>, o-H<sub>2</sub>D<sup>+</sup>)

Lifetime of L1512

**Chemical Modeling with the Deuterium Network** 

CO &  $N_2$  Profiles

# Analysis

#### Perform a Plummer-like density profile fitting on the extinction map





We used the radiative transfer tool originally written by Bernes (1979) and revised by Pagani+ (2007).





# Profiles of L1512





#### **Depletion factor**

| L1512                  | L183                              | L1544             |
|------------------------|-----------------------------------|-------------------|
| $27^{+17}_{-13}$       | $6^{+13}_{-3}$                    | >100              |
| $4^{+2}_{-1}$          | 2~2.5                             | ~15               |
| 9 <sup>+21</sup><br>-3 | >17                               | ~10?              |
| ~10                    | ~2                                |                   |
| This work              | Pagani+<br>2007,<br>2009,<br>2012 | Redaelli+<br>2019 |

JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin







JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

## Analysis: Chemical Model

- Pseudo time-dependent NAHOON code (Wakelam 2006) updated with our deuterium chemical network (Pagani+2009)
- The lower limit of the lifetime is **2.5~3.5 Myr**



JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

### Analysis: Chemical Model

#### <sup>12</sup>CO and N<sub>2</sub> abundance profiles



• Validate with the C<sup>18</sup>O data by assuming [C<sup>18</sup>O]= [<sup>12</sup>CO]/500



JCMT User Meeting 2019, ASIAA, Taiwan – 2019 Nov 07 – Sheng-Jun Lin

# Summary

- 1. We find  $n_{H_2}=1.1\times10^5$  cm<sup>-3</sup> and T=7.5±1 K at the center. The depletion factors of  $N_2H^+$  and  $N_2D^+$  are  $27^{+17}_{-13}$  and  $4^{+2}_{-1}$  in L1512, intermediate between the two other more advanced and denser starless core cases, L183 and L1544.
- 2. We find that CO has a depletion factor of ~430–870 and the N<sub>2</sub> profile is similar to that of CO. Thus, L1512 has probably been living long enough so that N<sub>2</sub> chemistry has reached steady state.
- 3.  $N_2H^+$  modeling remains compulsory to assess the precise physical conditions in the center of cold starless cores. L1512 is presumably older than 2.5~3.5 Myr, suggesting that the dominating core formation mechanism could be ambipolar diffusion.