Fragmentation and Relative Importance between Gravity, Magnetic Field, and Turbulence in IRDC G34

Patrick Koch (ASIAA)

and Y.-W. Tang, N. Peretto, G. Novak, A. Duarte-Cabral, N. Chapman, P.-Y. Hsieh, H.-W. Yen

Koch+2018

Hsieh+2018/

JCMT Users Meeting; November 7, 2019

Yen+2019

Fragmentation and Relative Importance between Gravity, Magnetic Field, and Turbulence in IRDC G34

Filaments and Magnetic Fields

- Taurus molecular cloud; Herschel / SPIRE 250 μm (~ 18" resolution; Palmeirim+2013)
- polarization: optical (Heyer+2008; Heiles+2000) and infrared (Chapman+2013)
- **B-field** striations \perp filament

Filaments and Magnetic Fields: Proposed Scenario

- accretion of background material through striations or sub-filaments along B-field lines
- radial contraction within main filament
- Iongitudinal infall along main filament
- important ancillary line data: coherent velocity structures
- formation steps: (1) large-scale MHD flows (turbulent?) lead to filamentary network with universal filament width ~ 0.1pc; (2) densest filaments fragment into prestellar cores by gravitational instability (critical line mass ~ 16 M_solar/pc, critical density ~ 2 x 10^4 cm^-3)

(e.g. André+2010; Menshchikov+2010; Molinari+2010; Sugitani+2011; Kirk+2013; Arzoumanian+2013; André+2014;)

IRDC G34.43

- distance: 3.7 kpc, elongated length ~ 8 pc
- mass: 1200 M_sol (mm1), 1300 M_sol (mm2) 300 M_sol (mm3)
- overall, very small viral parameter (α ~ 0.2), system gravitationally bound, but SF efficiency only ~ 7%. additional support from B-field ?
- observed with the CSO/SHARP ($350\mu m$, resolution 10")
- polarization percentage 0.4 10%
- B-field clearly organized perpendicular to longer axis around mm1/mm2; more aligned with longer axis on mm3, small dispersion
- add line kinematics:
 N₂H+ (1-0) from IRAM-30m (θ~28"),
 clear large-scale gradient

Peretto+2017

Tang, Koch+2019

Rathborne+2006

B-field, velocity gradient, turbulence & gravity

which component is dominant? negligible? - benchmark analysis

B vs v: small differences and spatially not random, but organized

(Tang, Koch+2019)

B-field, velocity gradient, turbulence & gravity

which component is dominant? negligible? - benchmark analysis

Polarization - Intensity gradient technique

$$\Sigma_B \equiv \frac{\sin\psi}{\sin\left(\frac{\pi}{2} - |\delta|\right)} = \frac{F_B}{|F_G + F_P|}$$
$$B = \sqrt{\frac{\sin\psi}{\sin\left(\frac{\pi}{2} - |\delta|\right)}} (\nabla P + \rho \nabla \phi) 4\pi R$$

Koch+2012ab, 2013

competition gravity vs B-field

map of local field strength, local force ratio

B vs G: spatially not random, but organized

and also DCF, virial parameters, mass-to-flux ratio, energy comparison

Analysis — Gravity vs Turbulence vs B-field

2 pc clump area

Object	$\frac{\sqrt{\langle B_t^2\rangle}}{B_0}$	$rac{\sqrt{\langle B_t^2 angle}}{B_0}_{ m N}$	Ν	$ riangle \phi_{ m B}$ (°)	B⊥ (mG)	$\langle \Sigma_{\rm B} \rangle$	$\lambda_{ m obs}$	$lpha_{ m vir}$	$\alpha_{ m B,vir}$	$P_{ m T}$ (10 ⁻	$P_{ m B}$ -9 dyn/cm ²)	$u_{ m G}$	Relative importance
MM1	$0.21 {\pm} 0.02$	$0.59{\pm}0.18$	9 ± 6	17.3 ± 0.8	$0.19\substack{+0.05 \\ -0.04}$	$0.42{\pm}0.02$	$1.2\substack{+0.3 \\ -0.2}$	$0.4\substack{+0.1 \\ -0.2}$	$0.9\substack{+0.5 \\ -0.3}$	$2.0\substack{+0.8 \\ -0.7}$	$5.7^{+3.5}_{-2.1}$	7.7	$G \sim B > T$
MM2	0.11 ± 0.01	0.33 ± 0.12	10 ± 8	9.0 ± 0.5	$0.34\substack{+0.10 \\ -0.09}$	$0.89 {\pm} 0.02$	$0.6\substack{+0.3 \\ -0.1}$	$0.4\substack{+0.2 \\ -0.2}$	$2.4^{+1.6}_{-1.1}$	$2.0^{+1.0}_{-0.9}$	$18.4\substack{+12.4 \\ -8.5}$	6.5	B>G>T
MM3	$0.35 {\pm} 0.03$	$0.71 {\pm} 0.38$	5 ± 5	20 ± 5	$0.06\substack{+0.04 \\ -0.03}$	$0.63 {\pm} 0.04$	$1.3^{+1.0}_{-0.9}$	$0.6\substack{+0.2 \\ -0.3}$	$1.2^{+1.4}_{-0.7}$	$0.3\substack{+0.2\\-0.2}$	$0.6\substack{+1.0 \\ -0.5}$	0.7	$G \sim B \sim T$

0.6 pc core area

Object	$\frac{\sqrt{\langle B_t^2\rangle}}{B_0}$	$rac{\sqrt{\langle B_t^2 angle}}{B_0}_{ m N}$	Ν	$\triangle \phi_{ m B}$ (°)	B_{\perp} (mG)	$\langle \Sigma_{\rm B} \rangle$	$\lambda_{ m obs}$	$lpha_{ m vir}$	$\alpha_{ m B,vir}$	P _T (10 ⁻	$P_{\rm B}$ -9 dyn/cm ²)	$u_{ m G}$	Relative importance
MM1	$0.20 {\pm} 0.03$	$0.98 {\pm} 0.22$	25 ± 13	18 ± 2	$0.49\substack{+0.11 \\ -0.09}$	$0.55 {\pm} 0.04$	$1.1\substack{+0.3 \\ -0.2}$	$0.5\substack{+0.1 \\ -0.1}$	$1.1\substack{+0.4 \\ -0.3}$	$13.6\substack{+2.6 \\ -2.4}$	$14.3^{+7.2}_{-4.8}$	45.1	G>B~T
MM2	$0.15 {\pm} 0.03$	$0.54{\pm}0.17$	14±10	10 ± 2	$1.12\substack{+0.37 \\ -0.26}$	$0.68 {\pm} 0.05$	$0.5\substack{+0.1 \\ -0.2}$	$0.9\substack{+0.1 \\ -0.1}$	$4.9^{+3.3}_{-1.7}$	$22.0^{+4.3}_{-3.9}$	$74.9^{+57.6}_{-30.8}$	35.0	$B \ge G > T$
MM3	$0.32 {\pm} 0.03$	1.06 ± 0.46	13 ± 11	20 ± 5	$0.16\substack{+0.07 \\ -0.05}$	$0.66 {\pm} 0.05$	$0.9\substack{+0.4 \\ -0.3}$	$0.9\substack{+0.3 \\ -0.2}$	$2.1_{-0.8}^{+1.4}$	$1.7\substack{+0.4 \\ -0.3}$	$1.5^{+1.7}_{-0.8}$	2.3	G>T~B

isolated single numbers have limited information need for joint analyses

Analysis – Subtle Balance G vs T vs B

Ratios

Analysis — Subtle Balance G vs T vs B Consequence for Fragmentation

MM3

different relative importance between B-field, turbulence, and gravity seems to control fragmentation towards next smaller scale; also seen in simulation work by e.g., Seifried+2015

Analysis — Subtle Balance G vs T vs B Consequence for Fragmentation

MM3

JCMT / POL-2 science: ideally suited to probe "initial conditions" for fragmentation

CSO / SHARP 350 µm vs JCMT / POL-2 850 µm

Conclusions

- role of B-field is variable (both in scales and locations)
- JCMT / POL-2 "intermediate" resolution between several-arcmin scales and (sub-)arcsec scales: "initial-condition" scale to map B-field morphologies
- generally: joint analyses is important
 B-field needs to be compared to turbulence, gravity (and more? feedback etc)
- need for ancillary (matching) data, in particular line kinematics; good and complete coverage is essential! smaller / larger areas give different results!
- example: initial-conditions for fragmentation in IRDC G34;
 balance between G, B, T derived for clump and core scales, trends across 2
 different scales are different and can explain different fragmentation types
- need to develop analysis tools: δ is a key observable, leading to local field strength measurement and local force ratio Σ_B