Transition from a Quiescent Core to an Infalling Envelope around the Class I Protostar L1489 IRS

Jinshi Sai（The University of Tokyo／NAOJ）

N．Ohashi，A．Maury，S．Maret，K．Saigo，and M．Gaudel

Large line width
indicating dynamical

Star and Disk Formation

Star and Disk Formation

Cores rotate like a rigid-body

Star and Disk Formation

Ohashi et al. (1997)

Infalling envelopes rotate conserving angular momentum ($j=$ constant)

Individual Protostars

Class I Protostar L1489 IRS

- Class I protostar in the Taurus Molecular Cloud (~140 pc)
- $\mathrm{L}_{\text {bol }}: 3.5 \mathrm{~L}_{\text {sun }}, \mathrm{T}_{\text {bol }}: 226 \mathrm{~K}$
- embedded in a relatively small gas condensation
- At the end of the Class I stage
- We have observed this source with ALMA
- Having a large Keplerian Disk with r~600 au
- $M_{*: ~}^{1.6} \mathrm{M}_{\text {sun }}$ (see also Yen+14)

Sai et al. (submitted)

Measurement of Rotation in the Previous Work

Introduction

Single Dish Observations

- Mapping ~2'x2' (~0.1 pc x 0.1 pc) region around L1489 IRS
- Telescope: IRAM-30m
- In C ${ }^{18} \mathrm{O} \mathrm{J}=2-1,{ }^{13} \mathrm{CO} \mathrm{J}=2-1, \mathrm{~N}_{2} \mathrm{H}^{+} \mathrm{J}=1$ $0, \& 1.3 \mathrm{~mm}$ continuum
- beam size: 11.8" (~1,700 au)
- $\Delta \mathrm{v}: 0.15 \mathrm{~km} / \mathrm{s}$
- rms: 70 mK

The purpose is to reveal the kinematics on $\sim 1,000-1,0000$ au scale and the transition from a core to an envelope

Observational Results in $\mathrm{C}^{18} \mathrm{O}$ 2-1

Moment 0/I maps
color: $\mathrm{C}^{18} \mathrm{O}$ 2-1
contour: 1.3 mm continuum

Narrow line width indicating quiet state
σ_{v} map

Large line width indicating dynamical gas motion

- Compact structure with $r \sim 2,000$ au with dynamical motion
- Clear rotation motion

Measurement of Rotation

Measurement of Rotation

Measurement of Rotation

Position-Velocity (PV) Diagram (along velocity gradient)

Rotation Diagram

fitted double power-law function

$$
V_{\text {rot }}= \begin{cases}V_{\text {break }}\left(\frac{r}{R_{\text {treak }}}\right)^{p_{\text {in }}} & \left(r \leq R_{\text {break }}\right) \\ V_{\text {break }}\left(\frac{r}{R_{\text {brack }}}\right) & \left(r>R_{\text {break }}\right)\end{cases}
$$

Good agreement with the compact structure in the observed maps

Specific Angular Momentum Distribution around L1489 IRS

Discussion

- The core has larger angular momentum than that measured in Goodman et al. (1993)
- Larger angular momentum in the envelope compared with the other sources
- Large angular momentum was already transferred

Comparison with the Theoretical Prediction

- Infalling region expands via the expansion wave in the Inside-out collapse model
- The front of expansion wave ($=\mathrm{c}_{\mathrm{s}} \times \mathrm{t}_{\text {age }}$)
- $R_{\text {front }} \sim 4,200$ au assuming $c_{s}=0.2 \mathrm{~km}$ s^{-1} and $\mathrm{t}_{\text {age }}=10^{5} \mathrm{yr}$
- much larger than the suggested transitional radius of $\sim 2,400$ au
- Protostellar mass of $1.6 \mathrm{M}_{\text {sun }}$ was contained within $\mathrm{r} \sim 2,400$ au?
- Heavy but small initial core!
- Strong turbulence or magnetic field?

Inside-out collapse model

outside: material knows nothing about the collapse
expansion wave propagating at c_{s}
inside: material is infalling

Summary

We have conducted single-dish observations mapping ~2'x2' region around L1489 IRS to investigate the kinematics on 1,000 au-10,000 au scale

In $\mathrm{C}^{18} \mathrm{O}$ 2-1

- A compact structure with $\mathbf{r} \sim 2,000$ au with dynamical motion is found at the protostellar position
- Rotational velocities are measured at radii from 700 au to 7,000 au
- The rotation diagram suggests that the rotation nature changes at $\mathbf{r} \sim 2,400 \mathrm{au}$, i.e., transition from an infalling envelope ($p \sim-1$) to a core ($p \sim 0.16$)
- The suggested transitional radius is consistent with the radius of the observed compact structure at the protostellar position
- The transitional radius is much smaller than the theoretical prediction in the Inside-out collapse model
- The protostellar mass of $\sim 1.6 \mathrm{M}_{\text {sun }}$ was contained within $\mathrm{r} \sim 2,400 \mathrm{au}$?

Prospect

- What causes such a small transitional radius even in the well evolved Class I source?
- What is the initial condition of L1489 IRS? Turbulent or Strong B-field?

With JCMT!

- \mathbf{C}^{18} O 3-2 mapping to analyze multi transitions and probe the difference of physical condition between the envelope and the core
- Polarization observations to investigate the morphology of B-field

Backup

$\mathrm{N}_{2} \mathrm{H}^{+} \mathrm{J}=1-0$

$\mathrm{N}_{2} \mathrm{H}^{+}$

$\mathrm{C}^{18} \mathrm{O}$

