Sequential Star Formation in the Filament S242

Lixia Yuan (苑利霞), NAOC, <u>lxyuan@bao.ac.cn</u>

Contributors: Ming Zhu (NAOC), Tie Liu (KASI, EAO), Guang-xing Li(YNU), Ke Wang(KIAA), Kee-Tae Kim (KASI), Jinghua Yuan (NAOC), Yuefang Wu (PKU)

Introduction

Star Formation and Filaments

Zernickel et al. 2013, NGC 6334

Johnstone et al. 2017, IC 5146

Gravitational collapse in finite sheets

Burkert et al., 2004

Objects

Filament S242

(2 kpc, \sim 30 pc, \sim 10⁴ Msun) End-dominated collapse ? (S242, Dewangan et al 2017)

PGCC G181.84+0.31

SCUBA-2 (850 μm) continuum Magenta ellipses: Compact sources (FellWalker)

DATA

Continuum emission

JCMT: 850 μ m (SCOPE, Liu et al.) Herschel: 70-500 μ m WISE: 3-22 μ m Spitzer: 1-5 μ m

Spectral lines

OTF mapping $^{12}CO(1-0)$, $^{13}CO(1-0)$ (TRAO) $^{12}CO(3-2)$, $H^{13}CO+(4-3)$ (JCMT) $HCO^{+}(1-0)$, $N_{2}H^{+}(1-0)$ (NRO 45-m telescope) Single point $H^{13}CO^{+}(1-0)$, $HCO^{+}(3-2)$ and $H^{13}CO^{+}(3-2)$

The sketch for the edge-collapse process

Self-gravity as the cause of increasing velocity dispersion ?

Gravitational stability in filament S242

 $\alpha_{\rm vir} \simeq \frac{\sigma_{\rm tot}^2}{2}$

Self-gravity accounts for a higher fraction of velocity dispersion in regions with high surface mass

How do the star formation in end-clumps effected by edge- collapse?

Star formation on the northern PGCC G181.84+0.31 (Yuan et al., MNRAS, 2019)

Magenta ellipses: Compact sources from SCUBA-2 850 μm (FellWalker): G01-G09

Protostars: G01, G02, G07 Pre-stellar candidates: others (70 μm emission)

YSOs identification, distribution, evolution

Sequential star formation in Fa, Fb and Fc sub-structures in G181

Spectral-line emission in G181

(Nobeyama 45-m telescope and JCMT)

HCO⁺(1-0)

 $N_{2}H^{+}(1-0)$

CO (3-2)

Kinematical states in G181:

The distribution of Centroid velocity and Velocity dispersion.

Velocity gradients: ~ 1.0 km s⁻¹pc⁻¹ The gas flow caused by edge-collapse ?

Mach number: 1.9 (Fa), 1.5 (Fb), 0.8 (Fc) Supersonic: the result of gravitational collapse ?

Summary

1 The filament S242 may be formed through the collapse of a single, elongated entity, where, an effect known as "gravitational focusing", drives the ends of the filament to collapse.

2 The increasing turbulent motion in the edge-collapse of S242 may be mainly gravitationally generated.

3 We find the signatures of sequential star formation activities in G181.84, that might be due to the fact that the global collapse of the S242 is driven by an edge effect.

Follow-up discussion:

What kind of clouds do the edge-effect usually act a role in? Maybe clouds morphologies, the higher density, global gravitational collapse.

The role of edge-effect in the star formation of clouds?

The subsequent fragmentation, star cluster formation, massive star formation, the effect on CMF and IMF?

The original of supersonic motion in molecular cloud?

High-mass star formation regions: N6334 (André, et al., 2016)