Magnetic fields in the cores of Taurus/B213 from JCMT BISTRO survey (preliminary results)

Eswaraiah Chakali, Ray S. Furuya, Di Li, Keping Qiu

Collaborators

Shih-Ping Lai, Jia-Wei Wang, Kate Pattle, Tao-Chung Ching

and JCMT BISTRO team

LDN1495/B213 in Taurus: distribution of dense gas and YSOs

 \rightarrow L1495/B213 is one of the most prominent filaments in nearby clouds in Gould belt.

- → well-studied
- \rightarrow Length ~ 10 pc
- \rightarrow Mass > 700 M_{su}
- \rightarrow ~40 YSOs,
- \rightarrow ~20 dense cores

(Hacar & Tafalla 2011, Hacar+ 2013)

→ Agents governing the connection between low density ISM, filaments, cores, and star formation in them?

Distribution of regions and their cores. C¹⁸O (black contour: 0.5 K km/s) and N_2H^+ (red contour: N2H+). Solid & open stars: Class I/Flat & Class II/III (Rebull+ 2010). Distance ~130 pc (Dzib+ 2019)

B-fields at larger scales based on optical and NIR polarimetry

At ~ pc to ~several pc scales B-fields are organized; either perpendicular to the dense filaments or aligned parallel to the low density striations. SCUBA-POL2 FOV: 16' diameter. Column density map is from Gould belt Survey (Palmeirim+ 2013; http://gouldbelt-herschel.cea.fr/archives)

Log of POL2 observations: 2 fields

Field 1

Field 2

Date of observation	No. of sets	Sequence number	$ au^a$	Date of observation	No. of sets	Sequence number	$ au^a$
2018 Nov 23	4	$17,\!20,\!25,\!28$	$0.05, \! 0.05, \! 0.04, \! 0.04$	2018 Nov 23 ^b	3	40.41.45	0.04.0.04.0.04
2018 Nov 20	5	$26,\!29,\!43,\!44,\!48$	0.03, 0.04, 0.05, 0.05, 0.04	2010 No. 25	0	51 59 50	0.05.0.06.0.06
2018 Nov 14	1	54	0.07	2018 Nov 25	3	$51,\!53,\!58$	0.05,0.06,0.06
2018 Nov 08	1	41	0.06	2018 Dec 03	2	32,39	0.05, 0.05
2018 Nov 06	2	56,57	0.04, 0.04	$2018 \ \mathrm{Dec} \ 06$	4	18,22,28,44	0.04, 0.03, 0.05, 0.05
$2018 \ {\rm Feb} \ 17$	1	34	0.05	2018 Dec 11	2	$45,\!48$	$0.02,\!0.2$
$2018 \ \mathrm{Jan}\ 20$	1	46	0.04	2018 Dec 21	1	48	0.03
2018 Jan 19	1	15	0.03	2018 Dec 23	1	44	0.05
$2018 \ \mathrm{Jan}\ 15$	1	24	0.04	2010 Jan 02	1	10	0.05
2018 Jan 02	1	43	0.04	2019 Jan 03	1	18	0.05
2017 Nov 23	1	53	0.05	2019 Jan 04	2	10,14	0.04, 0.04
2017 Nov 05	1	55	0.05	2019 Jan 08	1	11	0.04

Each field with 20 sets with exposure time of 14 hr

Two fields with 28 hrs Mosaicking Achieved sensitivity (at 12" gridsize) rms intensity ~0.7 mJy/beam rms PI ~0. 7 mJy/beam

Fragmented chain of cores

SCUBA-POL2 Stokes I map

pixel: 4", rms: 3 mJy/beam, contour at 15 mJy/beam

3	prestellar,	2 protostellar,	and
1	Class III	(Bracco+ 201	7)

Object	Evolutionary stage	RA (J2000)	Dec (J2000)	Abbreviation in text and figures
HGBS-J041937.7+271526 ^{a,e}	Prestellar	$04^{h}19^{m}37.7^{s}$	+27°15′20.0″	Miz-2
HGBS-J041923.9+271453 ^e	Prestellar	04 ^h 19 ^m 23.9 ^s	+27°14′53.0″	HGBS-1
Miz-8b ^{<i>a,c</i>}	Prestellar	$04^{h}19^{m}51.0^{s}$	+27°11′42.2″	Miz-8b
K04166 ^b	Class 0/I	04 ^h 19 ^m 42.9 ^s	+27°13′38.8″	K04166
K04169 ^b	Class 0/I	04 ^h 19 ^m 58.9 ^s	+27°10′00.5″	K04169
$J04194148 + 2716070^d$	T Tauri	04 ^h 19 ^m 41.5 ^s	+27°16′07.0″	T Tauri

Mosaic image, binsize=12"

(a) B-field map on I map

(b) PI map, yellow contours at PI/DP= 2.5, 3, 4 With in 8arcmin mosaic, sensitivity uniform

(c) I vs PI

PI b/n ~1.4 and ~4 mJy/beam

- weakly polarized intensity

- mean DPI ~0.7 mJy/beam
Vectors with different SNR in P/DP
Blue: 2.5 to 3 & red > 3

Complex B-fields inside core scales of ~0.01 to ~0.06 pc

Background and contours: Stokes ICriteria: I/DI > 10, P/DP > 2.5

P/DP Green 2.5 to 3; Red > 3

B-fields inside core scales of ~0.01 to ~0.06 pc

Distribution of B-fields in cores

B-fields vs filament long axis (135 deg) and large scale B-fields (32 deg)

K04166: mean B-field PA (40 deg) and outflow PA (30 deg) aligned

K04169: mean B-field PA (130 deg) and outflows PA (64 deg) misaligned

Complex B-fields in the cores of B213

Examine the correlation among B-fields vs Velocity gradients (VG) B-fields and Intensity gradients (IG)

Velocity centroid maps of N2H+ (1-0), 93.2 GHz, IRAM 30-m, HPBW = 26.5" (Punanova+ 2018)

Vlsr depends linearly on the 2D $v_{LSR} = v_0 + a\Delta\alpha + b\Delta\delta$ surface coordinates:

Magnitude of gradient: $\mathscr{G} \equiv |\nabla v_{LSR}| = (a^2 + b^2)^{1/2}/D$

Direction of gradient:

$$\theta_{m} = \tan^{-1} \frac{a}{2}$$

b

Goodman et al. (1993)

K04169 – protostellar core

Red: VG and IG Blue: B-fields

Arrow → direction mater flow or direction of gravitational potential

VG vs B

IG vs B

K04166 – protostellar core

VG vs B

IG vs B

Miz8b - starless core

Miz2 – prestellar core

Summary

- One of the most sensitive observations (28 hrs) reaching the sensitivity ~0.7 mJy/beam (14")
- Weakly polarized intensity 1.4 to 4 mJy/beam with P/DP > 2.5
- Traced B-fields in the pre/protostellar cores of B213
- Coherent and ordered B-fields at larger scales > 1 pc
- Complex B-fields at core scale of 0.01 to 0.06 pc bimodal with respect to B-fields of larger scales
- B-fields are governed by gravitational infall in protostellar cores?
 B-fields are shaped by material flows in starless cores?

Detailed analyses for K04166

- Magnetically regulated star formation?
- B-fields coherent with those of larger scales
- Outflows aligned with B-fields

Eswaraiah, Furuya, Li, Keping, +BISTRO team (in preparation)