(Dense) Molecular Gas & Star Formation in Galaxies

Results From JCMT Large Program MALATANG

Xue-Jian JIANG (蒋雪健)

Molecules in the Lifecycle of the ISM

Star & planet formation CO, H_2O , HCN, C_2H_2 , PAHs, C_{60} , ... Stellar ejecta H_2 , CO, C₂H₂, HCN, HC₃N, PAHs, C₆₀, ...

> ▶iffuse interstellar medium H₂, C₂, CH⁺, CN, PAHs,

Molecular clouds H_2 , CO, HCO⁺, HCN, HC₃N, ices (H₂O, CH₃OH), ...

Tielens 2013

History of Galaxy evolution and star formation

credit: ESA - C. Carreau

Outline

- Molecular gas and Star Formation
- Dense molecular gas Direct tracer of SF gas
- Recent studies
 - JCMT large program MALATANG
 - MALATANG-II
 - U'u' observations

different phases of ISM

$H_I \rightarrow H_2$

Molecular gas drives cosmic star formation

Riechers+ 2019; Bouwens+ 2016; Madau & Dickinson 2014; Magnelli+ 2013 SF galaxy populations ~10 billion years ago were significantly more gas-rich compared to the present day.

the SF history follows the evolution of the molecular gas supply in galaxies.

1. the SF history follows the evolution of the molecular gas supply in galaxies.

Star Formation "laws"

NOT any molecular gas ...

prestellar and protostellar cores are closely related to high density regions.

new stars formed in high density regions

- 90% cores in dense regions
- only a small fraction of the total gas mass (~15% in the case of Aquila) is above the column density threshold.
- only filaments with $M_{\text{line}} > M_{\text{line,crit}}$ are able to fragment into self-gravitating cores. (N_{H2} threshold ~ 7 x 10²¹ cm⁻², or a number density $n_{\text{H2}} \sim 2 \times 10^4 \text{ cm}^{-3}$)

Motivation: ISM & Star-formation

tracing dense gas — the direct fuel of SF

	Transition	$n_{ m crit}$	$E_J/k_{ m B}$
$^{13}CO J = 1 - 0$		$[cm^{-3}]$	[K]
	CO(1-0)	4.4×10^2	5.53
	CO(2-1)	$3.6 imes 10^3$	16.60
Sand and the second	CO(3-2)	$1.3 imes 10^4$	33.19
	CO(4-3)	$3.0 imes 10^4$	55.32
	CO(5-4)	5.9×10^{4}	82.97
	CO(6-5)	1.0×10^{5}	116.16
CS 2-1 (high critical density)	CO(7 - 6)	1.5×10^{5}	154.87
	HCN(1-0)	1.7×10^{5}	4.25
4 4 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A	HCN(2-1)	1.6×10^{6}	12.76
	HCN(3-2)	5.2×10^{6}	25.52
	HCN(4-3)	$1.3 imes 10^7$	42.53
Compact ~ pc scales	$HCO^{+}(1-0)$	$2.6 imes10^4$	4.25
High density $\sim 10^4 - 10^6 \text{ cm}^{-3}$	$HCO^{+}(2-1)$	2.6×10^{5}	12.76
SE > photon > dust reradiation	$HCO^{+}(3-2)$	1.0×10^{6}	25.52
31 - photon - 2 uust reraulation	$HCO^{+}(4-3)$	$2.5 imes 10^6$	42.53
	CS(1-0)	8.3×10^{3}	2.35
	CS(2-1)	$7.9 imes 10^4$	7.05
	CS(3-2)	$3.0 imes 10^5$	14.11
	CS(4-4)	7.7×10^{5}	35.27
mid-infrared	CS(5-4)	$1.8 imes 10^6$	49.37
	CS(6-5)	$3.1 imes 10^6$	65.83
	CS(7-6)	$4.9 imes 10^6$	65.83

Star Formation relations

Dense gas mass

Questions to address

- Different environments: nucleus, arm, disk?
- Connection between local clouds and galaxies?
- Consistency and differences between tracers?

JCMT LARGE PROGRAM: MALATANG

Mapping the Dense moLecular gAs in the sTrongest stAr-formiNg Galaxies

HCN 4-3 and HCO⁺ 4-3 survey toward 22 IR-bright galaxies

MALATANG RESULTS

- SF law (Tan et al. 2018)
- NGC 253 (Jiang et al. submitted)
 - ► CO(3-2)/(1-0)
 - ► *f*_{dense} (HCN/CO) and SFE_{dense} (SFR/HCN)
 - the role of stellar component ?

results (1) SF relation

- Inear correlations hold for all densities >10⁴ cm⁻³
- Bridge the gap between extragalactic (galaxy-integrated) and Galactic (single clouds) observations

bridging the gap in the universal dense-gas SF law.

- 1. the SF history follows the evolution of the molecular gas supply in galaxies.
- 2. bridging the gap in the universal dense-gas SF law.

Case study: NGC 253 the nearest nuclear starburst

concentration

index

dense gas distribution is compact

(2) NGC 253

30

20

offset along minor axis (arcsec)

Jiang et al. (submitted)

100 -10 -20 -30 20-20 60 40 30 -10 50100 $\log_{10} I_{\rm HCN \, 4-3} [\rm Kkm \, s^{-1}]$ 30 2010 -

offset along minor axis (arcsec) 0 -10 -20 -30 30 20-20 60 5040 10 0 -10

offset along major axis (arcsec)

offset along major axis (arcsec)

(3) line ratio variation

Jiang et al. (submitted)

CO ratio is dependent on environment

cautious about using CO 3-2 to estimate H₂

(4) SFE variation (SFR / HCN)

▶ high f_{dense} → high SFE ?

SFE vs. $\Sigma_{stellar}$: inconsistent with results using HCN 1–0

• lower IR/HCN10 in higher Σ_{stellar}

stellar surface density

from Jiménez-Dollan Constant Possible interpretation?

This appears to lead to a context-dependent role for the gas that emits in HCN and similar lines, evidenced by the changing IR-to-line ratios with environment.

Similar behavior in the Central Molecular Zone:

'regular' SF but strong dense gas emission -> low SFR/dense-gas ratio (SFE_{dense})

(Usero et al. 2015, Bigiel et al. 2016, Gallagher et al. 2018a)

similar discussion in the CMZ (Central Molecular Zone): (Kauffmann et al. 2013, 2017; Kruijssen et al. 2014; Rathborne et al. 2014)

comparing solar neighborhood to the CMZ

	Solar	CMZ
Observed		
Gas temperature (T_{gas})	10 K	65 K
Velocity dispersion (σ)	$2 {\rm km} {\rm s}^{-1}$	15 km s^{-1}
Average volume density (ρ)	$10^2 {\rm ~cm^{-3}}$	$10^4 {\rm ~cm^{-3}}$
Gas surface density (Σ)	$10^2 M_\odot { m pc}^{-2}$	$5 \times 10^3 M_{\odot} {\rm pc}^{-2}$
Derived		
Sound speed (c_s)	0.2 km s^{-1}	0.5 km s^{-1}
Turbulent Mach number (M_{1D})	10	30
Turbulent gas pressure (P_{turb}/k)	$10^5 {\rm K} {\rm cm}^{-3}$	$10^9 {\rm K} {\rm cm}^{-3}$
Hydrostatic pressure from self gravity (P_{grav}/k)	$10^5 {\rm K} {\rm cm}^{-3}$	$10^9 {\rm K} {\rm cm}^{-3}$
	Solar	G0.253+0.016
Measured		
Mean, column density PDF (N_0)	$0.5-3.0 \times 10^{21} \text{ cm}^{-2}$	$86 \pm 20 \times 10^{21} \text{ cm}^{-2}$
Dispersion, column density PDF ($\sigma_{\log N}$)	0.28-0.59	0.34 ± 0.03
Critical volume density (ρ_{crit})	$10^4 {\rm ~cm^{-3}}$	$>10^{6} { m cm}^{-3}$
Predicted (relative to solar neighborhood clouds)		
Mean, column density PDF (N ₀)	1	100
Dispersion, volume density PDF ($\sigma_{\log \rho}$)	1	1.2
Critical volume density (ρ_{crit})	1	10^{4}

Rathborne et al. 2014

Different relation with stellar feedback?

Critical density: n_c(HCN43) 100 times higher than n_c (HCN10)

stellar surface density

Stellar components affect gas density and SF activity!

gas density and "contrast"

Transition	$n_{ m crit}$	$E_J/k_{ m B}$	
	$[\mathrm{cm}^{-3}]$	[K]	
HCN(1-0)	$1.7 imes10^5$	4.25	
HCN(2-1)	$1.6 imes10^6$	12.76	
HCN(3-2)	$5.2 imes 10^6$	25.52	
HCN(4-3)	$1.3 imes 10^7$	42.53	

- higher *n*, Σ, *p*, *I*_{HCN1-0} ...
- Iower SF efficiency (SFR / LHCN10)

- 1. the SF history follows the evolution of the molecular gas supply in galaxies.
- 2. Bridging the gap in the universal dense-gas SF law.
- 3. Stellar components affect gas density and SF activity!

JCMT large program: MALATANG-II

0

16'0''

14'0''

12'0''

10'0''

13^h30^m20^s10^s

47°08'0''

10

20

NGC 5194 - EMPIRE

30

K km s⁻¹

40

29^m50^s 40^s

Right Ascension (J2000)

0^s

60	Galaxy	Scanned Field (arcmin ²)
	NGC 628	4.0×4.0
	NGC 2903	2.0×3.5
	NGC 3184	3.0×3.0
	NGC 3627	2.5×4.0
	NGC 4254	3.0×3.0
	NGC 4321	4.0×2.5
	NGC 5055	6.0×3.0
	NGC 5194	4.2×5.7
	NGC 6946	4.5×6.5
	+ Maffei 2	
	+ M83	

Species	$ \frac{\nu_{\text{rest}}}{(\text{GHz})} $	E_{up}^{a} (K)	$n_{\rm crit}^{a}$ (cm ⁻³)	Beam Size ^t (")
SiO 2–1 ^c	86.45	6.25	1×10^{5}	34.04
C ₂ H 1–0	87.32	4.19	1×10^{5}	33.86
HNCO 4–3	87.93	10.55	1×10^4	33.63
HCN 1-0	88.63	4.25	2×10^5	33.36
HCO ⁺ 1–0	89.19	4.28	3×10^4	33.15
HNC 1-0	90.66	4.35	1×10^5	32.61
$N_2H^+ 1 - 0$	93.20	4.47	4×10^4	31.73
$C^{18}O 1 - 0^{d}$	109.78	5.27	4×10^2	26.83
HNCO 5-4	109.90	15.8	1×10^7	26.70
¹³ CO 1–0 ^d	110.20	5.29	4×10^2	26.13
¹² CO 1–0	115.27	5.53	4×10^2	25.65

synergy with theEMPIRE 30-m survey

HCN 1-0 and 4-3

JCMT large program: MALATANG-II

Follow-up plans HCN & HCO+ (3-2)

- multi-J will better constraint
 SF properties
- compare Galactic clouds with external galaxies
- many available in archive

Ν	Name	RA	DEC	HCN 3-2	HCO+ 3-2
		J2000	J2000	archive	archive
1	NGC 1808	$05 \ 07 \ 42.3$	-37 30 47	no	no
2	NGC 3521	$11 \ 05 \ 48.6$	-00 02 09	no	no
3	NGC 4631	$12 \ 42 \ 08.0$	$32 \ 32 \ 29$	no	no
4	NGC 4736	12 50 53.0	$41 \ 07 \ 14$	no	no
5	NGC 5457	$14 \ 03 \ 12.5$	$54 \ 20 \ 56$	no	no
6	M51	$13\ 29\ 52.7$	$47 \ 11 \ 43$	no	no
7	NGC 2146	$06\ 18\ 37.7$	$78\ 21\ 25$	yes	no
8	NGC 3628	$11 \ 20 \ 17.0$	$13 \ 35 \ 23$	yes	no
9	NGC 253	00 47 33.1	$-25 \ 17 \ 18$	yes	yes
10	NGC 660	$01 \ 43 \ 02.4$	$13 \ 38 \ 42$	yes	yes
11	NGC 891	$02 \ 22 \ 33.4$	$42 \ 20 \ 57$	yes	yes
12	Maffei 2	$02 \ 41 \ 55.0$	$59 \ 36 \ 15$	yes	yes
13	NGC 1068	$02 \ 42 \ 40.7$	-00 00 48	yes	yes
14	IC 342	$03 \ 46 \ 48.5$	$68 \ 05 \ 47$	yes	yes
15	NGC 2903	$09 \ 32 \ 10.1$	$21 \ 30 \ 03$	yes	yes
16	M82	09 55 52.7	$69 \ 40 \ 46$	yes	yes
17	NGC 3079	$10 \ 01 \ 57.8$	$55 \ 40 \ 47$	yes	yes
18	NGC 3627	$11 \ 20 \ 14.9$	12 59 30	yes	yes
19	Arp 299	$11 \ 28 \ 30.4$	$58 \ 34 \ 10$	yes	yes
20	M83	$13 \ 37 \ 00.9$	-29 51 56	yes	yes
21	NGC 6946	$20 \ 34 \ 52.3$	$60 \ 09 \ 14$	yes	yes

HCN 1-0 from 30-m (Jiménez-Donaire et al. 2019)

 In the galaxy center: HCN 3-2/1-0 (in T_{mb}) ~ 0.5

- 1. the SF history follows the evolution of the molecular gas supply in galaxies.
- 2. Bridging the gap in the universal densegas SF law.
- 3. Stellar components affect gas density and SF activity!
- 4. multi-J observation can reveal (*T*, *n*) information.