

PONTIFICIA Universidad Católica De Chile

Spectral analysis of the quiescent low-mass X-ray binary in the globular cluster M30

Institut Spatial de McGill

<u>Constanza Echiburú</u> <u>Sebastien Guillot</u>

Collaboration with: Y. Zhao, C. O. Heinke, F. Özel, and N. A. Webb

Outline

- General description of neutron stars (NSs)
- Quiescent low-mass X-ray binaries (qLMXBs)
- Spectral analysis of the qLMXB in M30
- Discussion of the results
- Conclusion

INTRODUCTION

- Remnants of massive stars
- Typical masses

and radii

Mean densities

 $9-25\,M_\odot$

$$M_{\rm NS} \sim 1.4 \,{\rm M}_{\odot}$$

 $R_{\rm NS} \sim 10 \, {\rm km}$

$$\bar{\rho}\sim 10^{15}{\rm g\,cm^{-3}}$$

Remnants of massive stars $9 - 25 \text{ M}_{\odot}$ Typical masses $M_{\rm NS} \sim 1.4 \text{ M}_{\odot}$ and radii $R_{\rm NS} \sim 10 \text{ km}$ Mean densities $\bar{\rho} \sim 10^{15} \text{ g cm}^{-3}$

State of matter changes with increasing density

Credit: www.eurekalert.org/

Dense matter equation of state

- Describes behaviour of matter and its composition at any point in the stellar interior
- Relate pressure with energy density P=P(arepsilon)
- When combined with the equations of stellar structure, one can obtain

$$P, \varepsilon \longrightarrow M_{\rm NS}, R_{\rm NS}$$

How can we measure $R_{ m NS}$?

See Özel & Freire 2016, Annual Reviews of Astronomy and Astrophysics!

- Spectroscopic measurements
 - Low-mass X-ray binaries in quiescence
 - Thermonuclear bursts
- Pulse Profile Modeling
 - Rotation powered pulsars
 - Accretion powered pulsars
 - Thermonuclear burst oscillations

68% confidence contours obtained from all NSs in LMXBs during quiescence

> Figure adopted from Özel & Freire (2016)

Radius measurements - systematics

- Atmosphere chemical composition
- Distance
- Non-thermal component (Power-law)
- Interstellar Extinction
- Surface temperature inhomogeneities (Hot spots)
- Rotation effects
- Magnetic fields
- Instrumental calibration
- Pile-up
- Extraction region size (?)

Low-mass X-ray binaries

Neutron star accretes material from a lowmass companion

$$L_X \sim 10^{36} - 10^{38} \,\mathrm{erg}\,\mathrm{s}^{-1}$$

Infalling material releases energy

Light-element surface

Quiescent low-mass X-ray binaries

Accretion at low level

$$\sim 10^{-10} \,\mathrm{M_{\odot} \, yr^{-1}}$$

 Luminosity comes from the heated core, after repeated accretion events

 $L_X \sim 10^{32} - 10^{33} \,\mathrm{erg \, s^{-1}}$

Deep crustal heating

(Brown et al. 1998)

Quiescent low-mass X-ray binaries

Sedimentation occurs on short timescales ~ minutes

Alcock & Illarionov 1980, Bildsten et al. 1992

H atmosphere is expected

but it depends on the nature of the companion star!

Emission from qLMXBs

Emission from qLMXBs

Hydrogen atmosphere model for neutron stars

This is what we measure This is what we want Hydrogen fully ionized due to high surface temperatures:

 $T_{\rm eff} \sim 10^6 \,\mathrm{K}$

Emission from qLMXBs

Why are qLMXBs promising for measuring NS radii?

In quiescence, we observe the NS surface

They have low magnetic fields:

```
B\ll 10^{10}\,G
```

• We can model their thermal emission:

Hydrogen atmospheres

• If they are in globular clusters:

We know the distance

MY WORK

Consists in analyzing data from the globular cluster M30

Distance to M₃o is 8.2 kpc

(O'Malley et al. 2017)

Chandra X-ray image of M30

Source: http://chandra.harvard.edu

Chandra observed the globular cluster M₃o in two ocassions

My work

Extraction of the spectra

My work

Extraction of the spectra

My work - Modelling emission

High-energy excess has been observed in the tail of LMXBs during quiescence

> (e.g., Campana et al. 1998, Rutledge et al. 2002, Campana et al. 2004, Denegaar et al. 2011, Bahramian et al. 2014)

My work - Modelling emission

Our model accounts for:

Hydrogen atmosphere (Heinke et al. 2006a)

Typical photon index 1-2 (Guillot et a. 2013, Bahramian et al. 2014)

Verner et al. 1996, Wilms et al. 2000

Davis 2001

My work - Modelling emission

 The atmosphere model depends on the parameters we are looking for

- First we search for signs of flux variations over the 16 years between observations
- Lack of variability allow us to fit the spectra simultaneously, and with tied NS parameters
- We confirm the equilibrium state of the NS by comparing fluxes:

$$\log_{10}(F_{2001}/\text{erg cm}^{-2}\text{ s}^{-1}) = -13.12^{+0.03}_{-0.03}$$
$$\log_{10}(F_{2017}/\text{erg cm}^{-2}\text{ s}^{-1}) = -13.11^{+0.03}_{-0.03}$$

My work - spectral analysis

 Second: spectral fitting using the X-ray Spectral Fitting Package (XSPEC)

MCMC is a sampler, that explores the parameter space and tells us how well our model describes the data, given a set of parameters.

parameter space

- At each step, compares the new model to the old model (previous step) by computing its probability
- Keeps a record of every set of parameters tried
- Climbs to regions of higher
 probability —> convergence

MCMC is useful because:

- Allows to include known information in the model
- Exploration of parameter space results in posterior probability density functions of each parameter
- Shows how the parameters are correlated with each other
- It's easy to quantify the uncertainties of each parameter

Markov Chain Monte Carlo Simulations (MCMC)

My work - spectral analysis

$6.7 \le R_{ m NS} \le 8.7 \, m km$ $M_{ m NS} \le 1.2 \, m M_{\odot}$

Lugger et al. 2007 RESULTS (90% confidence)

MY RESULTS

(90% confidence)

 $7.0 \le R_{\rm NS} \le 19.2 \,\mathrm{km}$ $M_{\rm NS} \le 1.2 \,\mathrm{M}_{\odot}$

My work - spectral analysis

MY RESULTS (90% confidence) $6.7 \le R_{\rm NS} \le 8.7 \,\mathrm{km}$ $M_{\rm NS} \le 1.2 \,\mathrm{M}_{\odot}$

Why such a small radius?

Why such a small radius?

• He atmosphere models: underestimated radii by 20- 50%

Servillat et al. (2012), Catuneanu et al. (2013), Heinke et al. (2014), Bogdanov et al. (2016), Steiner et a. (2018)

Un-modelled hot spots: bias up to 28% smaller radii

Elshamouty et al. (2016)

 Rotational corrections: 3.5% underestimation compared to true radii
 Bauböck et al. (2015)

Testing He atmosphere

Testing He atmosphere

$8.5 \le R_{\rm NS} \le 13.4 \,\rm km$

$M_{\rm NS} \le 1.8 \,{\rm M}_{\odot}$

Consistent with typical NS radii in the 11-14 km range

Testing He atmosphere

WORK IN PROGRESS

Work in progress

The source region size matters!

 It introduces an additional systematic error that has not been incorporated in spectral fitting so far

Our results may be slightly different —> still debating!

Summary and conclusions

 H atmosphere results in a relatively small radius, but consistent with previous reported results

 He atmosphere results in a radius that is consistent with qLMXB radii measurements and other NSs

 The spectral model to be used will be determined by additional tests: identifying companion star (e.g. Haggard et al. 2004) or presence of surface Hot spots

THANKS