JCMT Science

Results and Resources

Steve Mairs - December 1, 2020 *With thanks to Mark Rawlings*

★ PI & Urgent queues
- Recent Results

★ Large Programs- Recent Results

★ The Event Horizon Telescope

★ JCMT Data Archive

What does the JCMT do?

Submillimetre light is ideal for observing Dust and gas related to the formation of stars

Both Near...

...And Far

Right Ascension (J2000)

JCMT/SCUBA image of ring of dust particles around the nearby star Epsilon Eridani. This star is similar to the Sun, with the dust eventually going on to form a planetary system.

Credit: Greaves et al.

JCMT: Dust

M66 at 850µm (red) and visible light (white background).

Regions of cold dust that appear as dark streaks in the white image glow brightly in the red image.

Right-hand panel: The SCUBA-2 image at 850 µm seen on its own.

Credit: VLT/ESO, JAC, G. Bendo

Molecular Line Strength and Galaxy Kinematics

M51 – CO 3-2 map by Vlahakis et al 2013 HARP (16-receptors)

SCUBA Finds First Galaxies

- Groundbreaking JCMT result was when we looked at the Hubble Deep Field with world's first submillimeter camera (it had 91 pixels!) at 850 µm (0.8cm)
- Paper has over 1000 citations because of that blob
- This is a galaxy in fact there are many in this picture some of earliest ever formed in our universe

SCUBA-2: Cosmology Legacy Survey Blank Field

140 arcmin² HST-Candles Blank Field, observed to 1.3 mJy at 450 μ m. 60 SMGs identified with > 3.75 σ -> directly resolve 16±7 percent of CIB. Statistical stacking of 24 μ m emitters recovers an additional ~40 percent. Average redshift of emitters is estimated to be <z> = 1.3.

SCUBA-2 and Herschel

Complementary facilities:

JCMT offers higher angular resolution

SCUBA-2 offers longer-wavelength data over comparable area

Extragalactic: sample different redshift ranges

Galactic: sample different core temperatures

Galactic: break degeneracy between dust temperature and emissivity

NGC 7331: Spiral galaxy that lies about 50 million light years away in Pegasus. SCUBA-2 data show details of central dust ring Credit: Joint Astronomy Centre, Herschel KINGFISH consortium

JCMT and SMA/ALMA

JCMT and SMA/ALMA

Overview

- Recent Results

- Recent Results

Telescope

PI Queue

- ★ Call for Proposals issued every 6 months for "normal sized" projects (< 200 h, but typically ~ 3 — 50 hours) to be run during following semester
 - ★ Current semester: 20B (1st August 2020 31st Jan 2021)
- ★ Proposals competitively assessed by Time Allocation Committee (TAC)
- ★ Successful projects run via "PI queue": Best project based on TAC priority and current weather is observed
- ★ Also: Urgent queue always open for submissions for current semester

https://proposals.eaobservatory.org

Spectral and Continuum Imaging of Hyperactive Comet 46P/Wirtanen

Coulson, Liu et al. The Astronomical Journal, 160:182.2020

Goal: Take an inventory of the molecules in the coma and observe distributions to monitor evolution throughout 1 week

Integrated intensity map of HCN (J = 4 - 3)This HARP image serves as a proxy for the activity level of the comet.

<u>Results</u>

★Confirmed the existence of a population of particles exuding methanol in the coma

★ Saw evidence of 1 mm-sized dust particles survive for ~10⁵ s and found HCN depletion over ~few hundred km

Magnetic Fields at the Waist of Bipolar HII Regions

Chakali, et al. The Astrophysical Journal, 897:1.2020

Goal: Study the interplay of HII feedback and magnetic fields in areas of dense ISM material

Vector map showing B-field orientations overlaid on the color composite of JCMT/SCUBAPOL2 850 µm Stokes I, Herschel SPIRE/250 µm, and Herschel PACS/70 µm. Red contours correspond to the JCMT/SCUBAPOL2 850 µm Stokes I map. Gray contours correspond to the VLA/21 cm continuum emission and represent the distribution of the ionized medium of the H II region

<u>Results</u>

- ★ B fields are compressed and bent by the expanding ionization fronts from the H II region. Enhances B-field and injects turbulence.
- ★ The combined contribution from thermal energy, turbulence, and B fields can not counteract the gravity in clump 1 but can in clump 2

The Abnormal Dimming of Betelgeuse

Dharmawardena, Mairs et al. The Astrophysical Journal Letters, 897:1.2020

Optical light would be blocked by a newly-generated cloud of dust

*Not to scale

But submillimetre data would either:
1. See right through the thin cloud
2. Obtain a **brighter** signal due to the dust

*Not to scale

Dr. Thavisha Dharmawardena

Star Spots!

Phosphine Gas in the Cloud Decks of Venus

Greaves, et al. Nature Astronomy

"Phosphine" (PH₃)

Biomarker: Molecules that may indicate the presence of life.

The Surface of Venus (Venera 13)

$450^{\circ} C = 840^{\circ} F$

Credit: Soviet Academy of Sciences/NASA

Dr. Jane Greaves

Amount of Light

"Phosphine" (PH₃)

Volcanoes
+ Lightning
+ Minerals
+ Photochemistry
+ Meteorites
<u> </u>

0.01% of the observed amount of phosphine

Phosphorous (P) + Hydrogen (H) - Phosphine (PH3)

Microbes (tiny living organisms) similar to those on Earth

+ Nothing

10x the observed amount of phosphine

★ PI & Urgent queues - Recent Results

Large Programs
 Recent Results

★ The Event Horizon Telescope

★ JCMT Data Archive

Large Program Queue

- ★ The JCMT spends 50% of its available science time on JCMT Large Programs.
- ★ Typically require significant (>200 hours) amounts of time over multiple semesters to address important scientific questions.
- ★ Proposals competitively assessed by Time Allocation Committee (TAC)
- ★ Enrolment open to: EAO regions (CN, JP, KR, TW), partner institutions (CA, UK), and observer status regions (Vietnam, Thailand, Malaysia, Indonesia). Open enrolment for semester 20A has ended.
- ★ Successful projects run via "LAP queue": Best project based on TAC priority and current weather is observed

https://www.eaobservatory.org/jcmt/science/large-programs/

Large Programs: Star Formation and Evolution in the Milky Way

https://www.eaobservatory.org/jcmt/science/large-programs/

CHIMPS2

SPACE

Large Programs: Nearby Galaxy Surveys

HASHTAG

DOWSING

https://www.eaobservatory.org/jcmt/science/large-programs/

-40

Large Programs: Submillimetre Galaxy Studies

RAGERS

NEP

https://www.eaobservatory.org/jcmt/science/large-programs/

S2LXS

S2COSMOS

MAIN (HST)

01m 10h00m 59m

58m 9h57m

3°00'

10

20

2°00'

40

1°20' 04m

03m

02m

AWESOME

STUDIES

The JCMT Transient Survey: How do young stars grow?

Previous Observations

New Observation

0

2016 - 11 - 20

2016 - 11 - 26

Scientists Find Stellar Flare <u>10 Billion Times</u> More Powerful Than Those on the Sun

By: Julie Freydlin | February 21, 2019

f 🔰 🗟 🔤 🕂 🛛 365

Scientists have caught a powerful flare of submillimeter-wavelength radiation from a young star in the Orion Nebula.

A research team using the James Clerk Maxwell Telescope (JCMT) has discovered the first stellar flare at submillimeter wavelengths one that is 10 billion times more powerful than flares from our Sun. This finding, published January 20th in *The Astrophysical Journal*, can help scientists better understand the processes by which

The decline of the flare was tracked over 30 minutes!

(Mairs et al 2018, ApJ 871:72)

BISTRO - Science Highlights

- Chandrasekhar-Fermi Method (Pattle et al. 2017)
- The results suggest:
 - Magnetic field strength & gravitational force between outflows in approximate balance
 - 'Hourglass' magnetic field shape may have been produced by gravitational interaction. Magnetic field may have been compressed until equilibrium was reached
 - On large scales, orientation of BN/ KL outflow has, been determined by magnetic field

BISTRO: Pillars of Creation

- Magnetic field runs along the length of the pillars, at significantly different angle from field in surrounding ionized plasma
- Intermediate magnetic field strength for region of space which is forming stars

- Mapping whole of Andromeda Galaxy (M31) with SCUBA-2
- Also, selected regions with HARP
- Will tell us about:
 - Physics of dust

Interstellar Medium (ISM)

Star formation

HASHTAG

The North Ecliptic Pole SCUBA-2 survey:

850-µm map and catalogue over 2 deg²

Shim, et al. MNRAS, 498:4, 5065–5079. 2020

Goal: Produce deep (1-2.3 mJy) new map of North Ecliptic Pole Region and analyse sources catalogued

Left: Cumulative number counts of $850 \mu m$ sources in the 2 deg² around the NEP. Arrows mark the 50% and 80% completeness limits for regions with $\sigma = 1$ mJy and $\sigma = 2.3$ mJy.

Right: SEDs of two of the brightest sources from optical to submm wavelengths. Arrows represent 3σ upper limits and overplotted lines represent the best-fitting models

Results

 \star Data have extended the submm \star Source counts at coverage by a factor of ~ 4 compared to previous surveys

850 µm are compared with other surveys.

 \star Valuable long-wave information for mid-IR **AKARI** sources

★ PI & Urgent queues
 - Recent Results

★ Large Programs
 - Recent Results

★ The Event Horizon Telescope

★ JCMT Data Archive

Black Hole Fingerprints: Relativistic Jets

Black Hole Fingerprints: Gravitational Waves

To observe a black hole directly....

...Telescope Diameter = ~13,000 km

But we don't need the whole mirror!

Martin Ryle and Antony Hewish won a Nobel Prize for developing: Interferometry

A massive project with many people involved!

Kazunori Akiyama^{1,2,3,4}, Antxon Alberdi⁵, Walter Alef⁶, Keiichi Asada⁷, Rebecca Azulay^{8,9,6}, Anne-Kathrin Baczko⁶, David Ball¹⁰, Mislav Baloković^{4,11}, John Barrett², Dan Bintley¹², Lindy Blackburn^{4,11}, Wilfred Boland¹³, Katherine L. Bouman^{4,11,14}, Geoffrey C. Bower¹⁵, Michael Bremer¹⁶, Christiaan D. Brinkerink¹⁷, Roger Brissenden^{4,11}. Silke Britzen⁶, Avery E. Broderick^{18,19,20}, Dominique Broguiere¹⁶, Thomas Bronzwaer¹⁷, Do-Young Byun^{21,22}, John E. Carlstrom^{23,24,25,26}, Andrew Chael^{4,11}, Chi-kwan Chan^{10,27}, Shami Chatterjee²⁸, Koushik Chatterjee²⁹, Ming-Tang Chen¹⁵, Yongjun Chen (陈永军)^{30,31}, Ilje Cho^{21,22}⁽¹⁰⁾, Pierre Christian^{10,11}⁽²⁾, John E. Conway³²⁽²⁾, James M. Cordes²⁸, Geoffrey B. Crew²⁽⁰⁾, Yuzhu Cui^{33,34}⁽⁰⁾, Jordy Davelaar¹⁷⁽⁰⁾, Mariafelicia De Laurentis^{35,36,37}⁽⁰⁾, Roger Deane^{38,39}⁽⁰⁾, Jessica Dempsey¹², Gregory Desvignes⁶, Jason Dexter⁴⁰, Sheperd S. Doeleman^{4,11}, Ralph P. Eatough⁶, Heino Falcke¹⁷⁽⁰⁾, Vincent L. Fish²⁽⁰⁾, Ed Fomalont¹, Raquel Fraga-Encinas¹⁷⁽⁰⁾, William T. Freeman^{41,42}, Per Friberg¹² Christian M. Fromm³⁶, José L. Gómez⁵, Peter Galison^{4,43,44}, Charles F. Gammie^{45,46}, Roberto García¹⁶, Olivier Gentaz¹⁶, Boris Georgiev^{19,20}⑤, Ciriaco Goddi^{17,47}, Roman Gold³⁶⑥, Minfeng Gu (顾敏峰)^{30,48} ⑥, Mark Gurwell¹¹⑥, Kazuhiro Hada^{33,34}⁽⁰⁾, Michael H. Hecht², Ronald Hesper⁴⁹⁽⁰⁾, Luis C. Ho (何子山)^{50,51}⁽⁰⁾, Paul Ho⁷, Mareki Honma^{33,34}⁽⁰⁾, Chih-Wei L. Huang⁷⁽⁰⁾, Lei Huang (黄磊)^{30,48}, David H. Hughes⁵², Shiro Ikeda^{3,53,54,55}⁽⁰⁾, Makoto Inoue⁷, Sara Issaoun¹⁷⁽⁰⁾, David J. James^{4,11}⁽¹⁾, Buell T. Jannuzi¹⁰, Michael Janssen¹⁷⁽²⁾, Britton Jeter^{19,20}⁽²⁾, Wu Jiang (江悟)³⁰⁽²⁾, Michael D. Johnson^{4,11}^(a), Svetlana Jorstad^{56,57}^(b), Taehyun Jung^{21,22}^(b), Mansour Karami^{18,19}^(c), Ramesh Karuppusamy⁶^(b), Tomohisa Kawashima³^(b), Garrett K. Keating¹¹^(c), Mark Kettenis⁵⁸^(b), Jae-Young Kim⁶^(b), Junhan Kim¹⁰^(c), Jongsoo Kim²¹, Motoki Kino^{3,59}, Jun Yi Koay⁷, Patrick M. Koch⁷, Shoko Koyama⁷, Michael Kramer⁶, Carsten Kramer¹⁶, Thomas P. Krichbaum⁶⁽⁰⁾, Cheng-Yu Kuo⁶⁰, Tod R. Lauer⁶¹⁽⁰⁾, Sang-Sung Lee²¹⁽⁰⁾, Yan-Rong Li (李彦荣)⁶²⁽⁰⁾, Zhiyuan Li (李志远)^{63,64}⁽⁰⁾, Michael Lindqvist³²⁽⁰⁾, Kuo Liu⁶⁽⁰⁾, Elisabetta Liuzzo⁶⁵⁽⁰⁾, Wen-Ping Lo^{7,66}, Andrei P. Lobanov⁶, Laurent Loinard^{67,68}¹, Colin Lonsdale², Ru-Sen Lu (路如森)^{30,6}¹, Nicholas R. MacDonald⁶¹, Jirong Mao (毛基荣)^{69,70,71}¹, Sera Markoff^{29,72}, Daniel P. Marrone¹⁰, Alan P. Marscher⁵⁶, Iván Martí-Vidal^{32,73}, Satoki Matsushita⁷, Lynn D. Matthews²⁽⁰⁾, Lia Medeiros^{10,74}⁽⁰⁾, Karl M. Menten⁶⁽⁰⁾, Yosuke Mizuno³⁶⁽⁰⁾, Izumi Mizuno¹²⁽⁰⁾, James M. Moran^{4,11}⁽⁰⁾, Kotaro Moriyama^{33,2}, Monika Moscibrodzka¹⁷, Cornelia Müller^{6,17}, Hiroshi Nagai^{3,34}, Neil M. Nagar⁷⁵, Masanori Nakamura⁷⁽²⁾, Ramesh Narayan^{4,11}⁽²⁾, Gopal Narayanan⁷⁶, Iniyan Natarajan³⁹⁽¹⁾, Roberto Neri¹⁶, Chunchong Ni^{19,20}⁽²⁾, Aristeidis Noutsos⁶⁽¹⁾, Hiroki Okino^{33,77}, Héctor Olivares³⁶⁽⁰⁾, Gisela N. Ortiz-León⁶⁽⁰⁾, Tomoaki Oyama³³, Feryal Özel¹⁰, Daniel C. M. Palumbo^{4,11}⁽ⁱ⁾, Nimesh Patel¹¹, Ue-Li Pen^{18,78,79,80}⁽ⁱ⁾, Dominic W. Pesce^{4,11}⁽ⁱ⁾, Vincent Piétu¹⁶, Richard Plambeck⁸¹, Aleksandar PopStefanija⁷⁶, Oliver Porth^{29,36}, Ben Prather⁴⁵, Jorge A. Preciado-López¹⁸, Dimitrios Psaltis¹⁰, Hung-Yi Pu¹⁸, Venkatessh Ramakrishnan⁷⁵, Ramprasad Rao¹⁵, Mark G. Rawlings¹², Alexander W. Raymond^{4,11}, Luciano Rezzolla³⁶, Bart Ripperda³⁶, Freek Roelofs¹⁷, Alan Rogers², Eduardo Ros⁶, Mel Rose¹⁰, Arash Roshanineshat¹⁰, Helge Rottmann⁶, Alan L. Roy⁶, Chet Ruszczyk², Benjamin R. Ryan^{82,1} Kazi L. J. Ryg1⁶⁵, Salvador Sánchez⁸⁴, David Sánchez-Arguelles^{52,85}, Mahito Sasada^{33,86}, Tuomas Savolainen^{6,87,88}, F. Peter Schloerb⁷⁶, Karl-Friedrich Schuster¹⁶, Lijing Shao^{6,51}⁰, Zhiqiang Shen (沈志强)^{30,31}⁰, Des Small⁵⁸⁰, Bong Won Sohn^{21,22,89}, Jason SooHoo², Fumie Tazaki³³, Paul Tiede^{19,20}, Remo P. J. Tilanus^{17,47,90}, Michael Titus², Kenji Toma^{91,92}, Pablo Tome^{6,84}, Tyler Trent¹⁰, Sascha Trippe⁹³, Shuichiro Tsuda³³, Ilse van Bemmel⁵⁸, Huib Jan van Langevelde^{58,94}⁽⁶⁾, Daniel R. van Rossum¹⁷⁽⁶⁾, Jan Wagner⁶, John Wardle⁹⁵⁽⁶⁾, Jonathan Weintroub^{4,11}⁽⁶⁾, Norbert Wex⁶^(b), Robert Wharton⁶^(c), Maciek Wielgus^{4,11}^(c), George N. Wong⁴⁵^(c), Qingwen Wu (吴庆文)⁹⁶^(c), Ken Young¹¹^(c), André Young¹⁷¹⁷, Ziri Younsi^{97,36}, Feng Yuan (袁峰)^{30,48,98}, Ye-Fei Yuan (袁业飞)⁹⁹, J. Anton Zensus⁶, Guangyao Zhao²¹⁽⁰⁾, Shan-Shan Zhao^{17,63}⁽⁰⁾, Ziyan Zhu⁴⁴, Juan-Carlos Algaba^{7,100}⁽⁰⁾, Alexander Allardi¹⁰¹, Rodrigo Amestica¹⁰², Jadyn Anczarski¹⁰³, Uwe Bach⁶, Frederick K. Baganoff¹⁰⁴, Christopher Beaudoin², Bradford A. Benson^{26,24}, Ryan Berthold¹², Jay M. Blanchard^{75,58}, Ray Blundell¹¹, Sandra Bustamente¹⁰⁵, Roger Cappallo², Edgar Castillo-Domínguez^{105,106}, Chih-Cheng Chang^{7,107}, Shu-Hao Chang⁷, Song-Chu Chang¹⁰⁷, Chung-Chen Chen⁷, Ryan Chilson¹⁵, Tim C. Chuter¹², Rodrigo Córdova Rosado^{4,11}, Iain M. Coulson¹², Thomas M. Crawford^{24,25}, Joseph Crowley¹⁰⁸, John David⁸⁴, Mark Derome², Matthew Dexter¹⁰⁹, Sven Dornbusch⁶, Kevin A. Dudevoir^{2,144}, Sergio A. Dzib⁶, Andreas Eckart^{6,110}, Chris Eckert², Neal R. Erickson⁷⁶, Wendeline B. Everett¹¹¹, Aaron Faber¹¹² Joseph R. Farah^{4,11,113}, Vernon Fath⁷⁶, Thomas W. Folkers¹⁰, David C. Forbes¹⁰, Robert Freund¹⁰, Arturo I. Gómez-Ruiz^{105,106}, David M. Gale¹⁰⁵, Feng Gao^{30,40}, Gertie Geertsema¹¹⁴, David A. Graham⁶, Christopher H. Greer¹⁰⁽⁰⁾, Ronald Grosslein⁷⁶, Frédéric Gueth¹⁶, Daryl Haggard^{115,116,117}, Nils W. Halverson¹¹⁸, Chih-Chiang Han⁷, Kuo-Chang Han¹⁰⁷, Jinchi Hao¹⁰ Yutaka Hasegawa⁷, Jason W. Henning^{23,119}, Antonio Hernández-Gómez^{67,120}, Rubén Herrero-Illana¹²¹, Stefan Heyminck⁶, Akihiko Hirota^{3,7}, James Hoge¹², Yau-De Huang⁷, C. M. Violette Impellizzeri^{7,1}, Homin Jiang⁷, Atish Kamble^{4,11}, Ryan Keisler²⁵, Kimihiro Kimura⁷, Yusuke Kono³, Derek Kubo¹²², John Kuroda¹², Richard Lacasse¹⁰², Robert A. Laing¹²³ Erik M. Leitch²³, Chao-Te Li⁷, Lupin C.-C. Lin^{7,124}, Ching-Tang Liu¹⁰⁷, Kuan-Yu Liu⁷, Li-Ming Lu¹⁰⁷, Ralph G. Marson¹²⁵, Pierre L. Martin-Cocher⁷, Kyle D. Massingill¹⁰, Callie Matulonis¹², Martin P. McColl¹⁰, Stephen R. McWhirter², Hugo Messias^{121,126}, Zheng Meyer-Zhao^{7,127}, Daniel Michalik^{128,129}, Alfredo Montaña^{105,106}, William Montgomerie¹¹ Matias Mora-Klein¹⁰², Dirk Muders⁶, Andrew Nadolski⁴⁶⁶⁰, Santiago Navarro⁸⁴, Joseph Neilsen¹⁰³⁶⁰, Chi H. Nguyen^{10,130}⁶⁰, Hiroaki Nishioka⁷, Timothy Norton¹¹, Michael A. Nowak¹³¹¹⁰, George Nystrom¹⁵, Hideo Ogawa¹³², Peter Oshiro¹⁵, Tomoaki Oyama¹³³, Harriet Parsons¹², Scott N. Paine¹¹, Juan Peñalver⁸⁴, Neil M. Phillips^{121,126}, Michael Poirier², Nicolas Pradel⁷, Rurik A. Primiani¹³⁴, Philippe A. Raffin¹⁵, Alexandra S. Rahlin^{23,135}, George Reiland¹⁰, Christopher Risacher¹⁶, Ignacio Ruiz⁸⁴, Alejandro F. Sáez-Madaín^{102,126}, Remi Sassella¹⁶, Pim Schellatt^{17,136}, Paul Shaw⁷, Kevin M. Silva¹², Hotaka Shiokawa¹¹, David R. Smith^{137,138}, William Snow¹⁵, Kamal Souccar⁷⁶, Don Sousa², T. K. Sridharan¹¹, Ranjani Srinivasan¹⁵, William Stahm¹², Anthony A. Stark¹¹, Kyle Story¹³⁹, Sjoerd T. Timmer¹⁷, Laura Vertatschitsch^{11,134}, Craig Walther¹², Ta-Shun Wei⁷, Nathan Whitehom¹⁴⁰, Alan R. Whitney², David P. Woody¹⁴¹, Jan G. A. Wouterloot¹², Melvin Wright¹⁴², Paul Yamaguchi¹¹, Chen-Yu Yu⁷, Milagros Zeballos¹⁰⁵ Shuo Zhang¹⁰⁴, and Lucy Ziurys¹⁰

The Event Horizon Telescope Collaboration,

MANAGEMENT

Director	Shep Doeleman
Project Scientist	Dimitrios Psaltis
Project Manager	Remo Tilanus

SCIENCE COUNCIL

Keiichi Asada (ASIAA)
Geoffrey Bower (ASIAA) - Vice Chair
Heino Falcke (Radboud) - Chair
Vincent Fish (MIT)
Charles Gammie (U. Illinois)
Ciriaco Goddi (Radboud) - Secretary
Thomas Krichbaum (MPIfR)
Sera Markoff (U. Amsterdam)
Dan Marrone (U. Arizona)
Jim Moran (SAO/CfA)
Feryal Ozel (U. Arizona)

WORKING GROUP COORDINATORS

Instrumentation

<u>Development:</u> Gopal Narayanan, Jonathan Weintroub <u>Integration and Testing:</u> Alan Roy, Andre Young, Satoki Matsushita <u>Array Coordination & Readiness:</u> Remo Tilanus, David James <u>Monitoring and Control:</u> Daan van Rossum, Nimesh Patel

Data Collection and Processing

<u>Proposal Coordination:</u> Michael Johnson, Eduardo Ros, Keiichi Asada, Sera Markoff <u>Science Operations:</u> Vincent Fish, Thomas Krichbaum <u>Correlations:</u> Walter Alef, Geoff Crew <u>Synthetic Data Generation:</u> Vincent Fish, Roger Deane <u>Calibration and Error Analysis:</u> Lindy Blackburn, Ilse van Bemmel

Data Analysis

<u>Imaging:</u> Michael Johnson, Kazunori Akiyama <u>Scattering:</u> Geoff Bower, Ramesh Narayan <u>Time Variability:</u> Dan Marrone <u>Polarimetry:</u> Monika Mościbrodzka, Ivan Martí-Vidal

Near Horizon Science Utilization

<u>Parameter Definition:</u> Heino Falcke, Keiichi Asada <u>Theoretical Models and Simulations:</u> Charles Gammie, Hung-Yi Pu, Yosuke Mizuno <u>Model Comparison and Feature Extraction:</u> Jason Dexter, Feryal Özel

Beyond Horizon Science Utilization <u>Multiwavelength Science:</u> Sera Markoff, Kazuhiro Hada <u>Active Galactic Nuclei:</u> Svetlana Jorstad, Thomas Krichbaum, Neil Nagar <u>Pulsars:</u> Jim Cordes, Michael Kramer, Scott Ransom

Products and Publicatons <u>Software and Data Compatibility:</u> Chi-kwan Chan, Ciriaco Goddi <u>Publications:</u> Laurent Loinard, Huib van Langevelde <u>Outreach:</u> Mislav Baloković, Eduardo Ros, Fumie Tazaki

0000000000000000000000 0000 \bigcirc 00000 0 \bigcirc O 00000 OOO Q Q QQ O 0 000 0 0 0 0 0 0 0 0 0 0 0 0Q Q 0 \bigcirc \bigcirc \bigcirc \bigcirc Q O O O O O O O O O O00000000 \bigcirc Q 0 0 0 0 0 0 0 0 0 0 0 0 \bigcirc 00

XKCD

SIZE COMPARISON: THE M87 BLACK HOLE AND OUR SOLAR SYSTEM

EHT BLACK HOLE IMAGE SOURCE: NSF

★ PI & Urgent queues
 - Recent Results

★ Large Programs- Recent Results

★ The Event Horizon Telescope

★ JCMT Data Archive

Data Archive Power

THE JCMT LEGACY RELEASE 2: SCUBA-2 $850\mu m$ CO-ADDS AND CATALOGS

SARAH F. GRAVES^{1,2}, GRAHAM S. BELL¹, DAVID S. BERRY¹, IAIN M. COULSON¹, MALCOLM J. CURRIE^{3,7}, JESSICA T. DEMPSEY¹, PER FRIBERG¹, TIM JENNESS⁴, DOUG JOHNSTONE^{5,6,7}, HARRIET A. L. PARSONS¹, MARK G. RAWLINGS¹, HOLLY S. THOMAS⁷, AND JAN G. A. WOUTERLOOT¹

- SCUBA legacy catalogue continues to produce highest number of JCMT papers
- Especially for nonexperts, key to high impact is easily accessible, calibrated, trusted data
- New JCMT legacy releases intended to continue this trend

JCMT Science Archive

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/jcmt/

SCUBA · SCUBA-2

- ★ Public data are available and waiting to be analysed!
- ★ Science archive of advanced data products accounts for more than half of JCMT publications

<u>Summary</u>

★ JCMT observes gas and dust both near and far!

★ 50% PI queue and 50%
 LAP queue - lots of science!

★ Very complementary to satellite/interferometry data

★ Essential piece of the Event Horizon Telescope - black holes!

 \star Public data are available!

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/jcmt/