Heterodyne Calibration at JCMT

Alex Tetarenko

(with lots of help from EAO Staff)

Overview of Heterodyne Calibration

- Two types:
 - Online Calibration
 - Offline Calibration
- Additional instrument specific fixes
- Workflow for HARP and $\overline{U}\overline{U}$

Online Calibration

- Already applied to raw data.
- What Calibrate all ACSIS data into T_A^* scale.
- Why Correct spectra for atmospheric attenuation and instrumental effects.
- How Combine measurements of hot/cold/ambient loads, with knowledge of sky conditions.

Chopper Wheel Calibration (Penzias & Burrus 1973)

Observing Standards

- Observe calibration sources at standard frequencies and bandwidths to match science observations every night.
- TSS checks if standards are within a nominal range (e.g., peak flux).

Instrument	Source	Туре	mean	std	% error
HARP	CRL2688	PEAK	9.4	1.1	12.1
HARP	CRL2688	INTEGINT	237.2	28.3	11.9
HARP	CRL618	PEAK	4.4	0.5	11.9
HARP	CRL618	INTEGINT	139.8	19.3	13.8
HARP	IRC+10216	PEAK	31.2	3.2	10.2
HARP	IRC+10216	INTEGINT	672.0	70.4	10.5

Observing Standards

 Monitor performance of telescope and checking the temperature scale.

Offline Calibration - Temperature

- To be applied by user after observation.
- What Convert TA* into physical units.
- Why To get data in scientific units.
- How Use efficiency measurements.

Main beam temperature – point sources

$$T_{mb} = T_A^* / \eta_{mb}$$
$$\eta_{mb} = 0.64$$

Radiation temperature – large sources filling beam

$$T_R^* = T_A^* / \eta_{fss}$$

$$\eta_{fss} = 0.75$$

Offline Calibration – Flux Density

- To get flux density use the aperture efficiency.
- Calculated in same way as η_{fss} .

$$S_{Jy} = 15.6 T_A^* / \eta_A$$

$$\frac{\eta_A}{\eta_{mb}} = 0.8$$

Monitoring Efficiency Measurements

- We regularly measure η_{mb} and η_A .
- There are still sources of uncertainty: natural variation in the beam, systematic issue, brightness of standards.

How to apply?

- Divide data by efficiency value using cdiv task.
- Update file attributes:
 - setlabel
 - setunits (if changed to flux density)
- Example:

cdiv in=harp_reduced.sdf scalar=0.64 out=harp_tmb.sdf setlabel ndf=harp_tmb.sdf label=`T_mb'

Additional Considerations

- To be applied by user if needed.
- May need to correct for specific instrument problems.
- Examples:
 - HARP receptor to receptor power variation
 - RxA side-band correction

HARP Reminders

Example HARP Raster Map

- 16 receptors in the array.
- Raster map: scan across the target source field.

Additional Considerations - HARP

- Variation in total power response per receptor causes gridlines in raster maps.
- Can be fixed (sometimes).

Additional Considerations - HARP

- 1. Calculate relative power across whole map for each receptor & derive normalization constant relative to reference receptor.
- 2. Apply normalization constant to un-gridded files for each receptor.
- 3. Re-grid/re-reduce corrected raw files.
- Add FLATFIELD=1 to your recipe parameters (recpars) file to turn this on in heterodyne recipes.
- WARNING: Assumes each detector sees the same emission in map. Not valid for point sources!
- See Jenness et al., 2015 for details.

Summary of Workflow - HARP

1. Download data.

- 2. Reduce with ORAC-DR.
 - ORAC_DATA_IN=/User/HARP/raw ORAC_DATA_OUT=/User/HARP/reduced Is ORAC_DATA_IN/*.sdf >> data_files.lis oracdr -files data_files.lis -loop file -batch -log sf -calib qaparams=myqa.ini bad_receptors=index -recpars mypar.ini -nodisplay
- 3. Check data quality (do you have the HARP raster problem?).
- 4. Review logs and check standards for the night are in nominal range.
- 5. Select temperature/flux scale and apply related efficiency value.

Summary of Workflow - \overline{U}

Commissioning in Progress...

1. Download data.

- 2. Reduce with ORAC-DR, keeping different polarizations separate. ORAC_DATA_IN=/User/UU/raw ORAC_DATA_OUT=/User/UU/reduced/p0 Is ORAC_DATA_IN/*.sdf>> data_files.lis echo "NU1L NU1U" > \$ORAC_DATA_OUT/bad_receptors.lis oracdr -loop file -batch -file \$ORAC_DATA_IN/filelist.lis -nodisplay -log sf verbose -calib bad_receptors=\$ORAC_DATA_OUT/bad_receptors.lis
- 3. Check data quality: compare p0/p1, compare LSB/USB, check for weird features.
- 4. Review logs and check standards for the night are in nominal range.
- 5. Select temperature/flux scale and apply related efficiency value.

Weird Spectral Features - \overline{U}

Helpful Links and Info

- Heterodyne calibration webpages:
 - <u>http://www.eaobservatory.org/jcmt/instrumentation/heterodyne/cali</u>
 <u>bration</u>
- HARP Spectral Standard Average Spectra:
 - <u>http://www.eaobservatory.org/jcmt/instrumentation/heterodyne/cali</u>
 <u>bration/harpstandards</u>
- PI/Cols of projects: see OMP project pages for access to observing logs, especially TSS comments on heterodyne calibration observations.
- If required, e-mail either your FoP or Observatory directly,
 - <u>helpdesk@eaobservatory.org</u>

