

Magnetic fields in early stages of star formation revealed by dust polarization observations

Junhao Liu (刘峻豪)

2021.06-2023.07 Postdoctoral Fellow. EAO 2018.08-2021.05 Predoctoral Fellow. CfA 2015.08-2021.03 Ph.D. Nanjing University.

Outline: Magnetic fields in star formation

- Research history
 - B fields in early stages of low-mass star formation: JCMT POL-2 observations of low-mass starless Ophiuchus C
 - B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
 - Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations
- Current research and research plan
 - A compilation of all the previous DCF estimations (current research)
 - Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
 - ALMA polarization survey of B fields in NGC 6334 sources
 - Test the Koch 2012 method with simulations
 - Polarization survey of massive clumps/cores in IRDCs

Outline: Magnetic fields in star formation

Research history

- B fields in early stages of low-mass star formation: JCMT POL-2 observations of lowmass starless Ophiuchus C
- B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
- Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations

Current research and research plan

- A compilation of all the previous DCF estimations (current research)
- Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
- ALMA polarization survey of B fields in NGC 6334 sources
- Test the Koch 2012 method with simulations
- Polarization survey of massive clumps/cores in IRDCs

Low-mass star formation

Magnetic field or turbulence?

$\begin{array}{l} \mbox{Magnetic field-dominated model} \\ \mbox{(Mouschovias et al. 2006)} \\ \mbox{G} \lesssim \mbox{B to G} \gtrsim \mbox{B: ambipolar diffusion} \end{array}$

Turbulence-dominated model (Mac Low & Klessen, 2004) G>B: intersecting turbulent flow create over-densed region

Zeeman observations

Line of sight (LOS) B strength (lower limit)

Compilation (Crutcher 2012): G>B in protostellar cores $K \gtrsim B$ in protostellar cores

Dust polarization observations Plane of sky (POS) B orientation

POS B Strength: DCF method

$$B_{\rm pos} = Q\sqrt{4\pi\rho} \ \frac{\delta V}{\delta\phi}$$

Compilation: G>B in protostellar cores K ≲B in protostellar cores

Initial conditions of low-mass star formation

Alves 2014: Pipe-109. APEX

- Low-mass Starless core: 12 M_{\odot}
- 10 K (Stamatellos 2007).
- Least evolved core in Ophiuchus.

- B-Fields in STar-Forming Region Observations (BISTRO)
- 14″ (~0.008pc) at 125 pc.
- 14 hrs observation. 2 mJy/beam

Collaborators: Keping Qiu (NJU), David Berry (EAO), and other members of the BISTRO team.

Parameters Derived from Different Modified DCF Methods with Correction for Beam Integration

Parameter	Description	SF	ACF	UM
$\Delta \theta$ (deg)	Angular dispersion	45 ± 14	34 ± 13	21 ± 7
$\langle \delta B^2 \rangle / \langle B_0^2 \rangle$	Turbulent-to-ordered magnetic field energy ratio	0.61 ± 0.37	0.35 ± 0.27	0.14 ± 0.09
$B_{\rm pos}$ (μ G)	Plane-of-sky magnetic field strength	103 ± 46	136 ± 69	213 ± 115
λ	Observed magnetic stability critical parameter	7.8 ± 5.7	5.9 ± 4.6	3.8 ± 3.0
1 c	Corrected magnetic stability critical parameter	2.6 ± 1.9	1.9 ± 1.5	1.3 ± 1.0
$E_B (10^{35} \text{ J})$	Total magnetic energy	5.4 ± 4.8	9.5 ± 9.7	23.2 ± 25.0

- Different modified DCF methods:
 - Structure function (SF; Hildebrand 2009)
 - Auto-correlation function (ACF; Houde 2009)
 - Unsharp masking method (UM; Pattle 2017)
- B strength: UM>ACF>SF. Similar to the behavior in OMC-1 (Hildebrand 2009, Houde 2009, Pattle 2017)
- G>B and K \leq B. Consistent with protostellar cores.
- A pilot polarization observation toward a low-mass starless core in BISTRO-1.
- BISTRO-3 covers more low-mass starless cores (L1544, L1498, L1517B, L43, and FeSt 1-453) as a larger sample.

Outline: Magnetic fields in star formation

Research history

- B fields in early stages of low-mass star formation: JCMT POL-2 observations of low-mass starless Ophiuchus C
- B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
- Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations

Current research and research plan

- A compilation of all the previous DCF estimations (current research)
- Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
- ALMA polarization survey of B fields in NGC 6334 sources
- Test the Koch 2012 method with simulations
- Polarization survey of massive clumps/cores in IRDCs

High-mass star formation

Turbulent core model (McKee & Tan 2002)

- Scaled-up version of low-mass star formation
- Core in equilibrium.
- K and B support G

Competitive accretion model (Bonnell et al. 1997)

- Competitive accretion of stellar embryos
- Core in non-equilibrium
- K and B cannot support G

Kauffmann 2013: K cannot solely support G in massive clumps/cores.

How about K+B VS G?

Observing B is necessary!

Infrared dark clouds (IRDCs)

CSO

Liu 2018: G035.39 JCMT POL-2

Beuther 2018: 18310-4 ALMA

Few single-dish polarization observations revealing the clump-scale B field. G \gtrsim B. K \lesssim B.

Only one interferometer polarization observation of the core-scale B field. Marginal detection.

B in massive cores in IRDCs?

ALMA C1+C3 observations

Resolution 0.6 " - 0.8" (0.015-0.02 pc)

Three massive clumps: MM1, MM4, and MM9

Mass: each >100 M_{\odot}

Evolution: MM1> MM4> MM9

Zhang+ 2015: MM4 K<G

Collaborators: Qizhou Zhang (CfA), Keping Qiu (NJU), Hauyu Baobab Liu (ASIAA), Thushara Pillai (BU & MPIfR), Josep Girart (ICE & IEEC), Zhi-Yun Li (UVA), and Ke Wang (PKU)

ALMA C1+C3. 1.3mm. Liu, J.+ 2020.

Non-equilibrium massive star formation?

Table 4

Source	(10	${}^{6} \text{ cm}^{-3}$	σ_{turb} (km s ⁻¹)	$(\langle B_{\mathrm{t}}^2 angle / \langle B_{\mathrm{0}}^2 angle)^{rac{1}{2}}$		B _{pos} (mG)		δ (")		N			
MM1-Core1		3.2		1.4		1.2		1.2		;)	0.53		4.1	0.50
MM4-Core4		1.1	0.46	6	1.2 0.32		2	0.38 6.9		6.9	0.38			
Source	$(\text{km s}^{\sigma_{\text{th},3D}})$	$\frac{\sigma_{\text{turb},3D}}{(\text{km s}^{-1})}$	$\frac{V_{A,3D}}{(\text{km s}^{-1})}$	M M⊙	$M_{ m th}$ M_{\odot}	$M_{\rm turb}$ (M_{\odot})	$M_{ m B}$ (M_{\odot})	$M_{ m B}^{ m mod}$ (M_{\odot})	M_{k+B} (M_{\odot})	M_{k+B}^{mod} (M_{\odot})	α_{k+B}	α_{k+R}^{mod}		
MM1-Core1	0.33	2.42	1.5	212.4	1.9	102.8	61.1	95.5	132.8	161.2	0.63	0.76		
MM4-Core4	0.24	0.80	0.51	42.6	0.58	6.6	7.3	11.4	11.8	15.6	0.28	0.37		

- B strength estimated with the angular dispersion function method (Houde 2016)
- Massive cores in non-equilibrium. $\alpha < 1$.
- Virial parameter in MM1-Core1 larger than that in MM4-Core4. *α* increases as core evolves?
- The only B virial analysis of massive dense cores at ~0.1 pc in IRDCs

Competitive accretion model: non-equilibrium Turbulent core model: equilibrium

Gravity directions

Average orientation between local gravity (LG) and intensity gradient (IG): 30°, 22°, and 28° for MM1, MM4, and MM9, respectively

Intensity gradient tend to be aligned with local gravity

Average orientation difference between B and LG: 34° and 36° for MM1 and MM4, respectively

B and gravity poorly aligned toward the peak, well aligned toward the edge

Fragmentation in MM1

Turbulent Jeans mass 309 M _☉	Turbulent Jeans length 0.14 pc				
Average mass 14.3 M _☉	Corrected average separation 0.069 pc				
Thermal Jeans mass 0.76 M_{\odot}	Turbulent Jeans length 0.019 pc				

Deviation from initial environment

B VS outflow

Theories and simulations Outflows related to disk-scale B Strong B can align outflows

Observations

No strong relation between core-scale B and outflows in evolved massive clumps

Banerjee 2006

B VS outflows in MM4 and MM9

- Half aligned
- B plays an important role from condensation to disk scale in early stage?

Outline: Magnetic fields in star formation

- Research history
 - B fields in early stages of low-mass star formation: JCMT POL-2 observations of low-mass starless Ophiuchus C
 - B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
 - Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations
- Current research and research plan
 - A compilation of all the previous DCF estimations (current research)
 - Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
 - ALMA polarization survey of B fields in NGC 6334 sources
 - Test the Koch 2012 method with simulations
 - Polarization survey of massive clumps/cores in IRDCs

The Davis-Chandrasekhar-Fermi (DCF) method

Popularity

The most widely used method to estimate the Plane-of-sky B strength (B_{pos}) from dust polarization observations

Components of magnetic fields

Total (rms) B: $B^{tot} = \langle B^2 \rangle^{1/2}$ Mean (uniform) B: $B^u = \langle B \rangle$ Turbulent B: $B^t = (\langle B^2 \rangle - \langle B \rangle^2)^{1/2}$

1951PhRv...81..890D 1951/03 cited: 116 The Strength of Interstellar Magnetic Fields Davis, Leverett

1953ApJ...118..113C

```
1953/07 cited: 542
```

Magnetic Fields in Spiral Arms.

Chandrasekhar, S.; Fermi, E.

Four assumptions of the DCF method

 1. The mean (uniform or ordered) B component B^u is prominent (i.e., small angle approximation, B^t<<B^u~B^{tot})

• 2. Alfvenic B perturbation. i.e., turbulent kinetic energy E_K^t = turbulent magnetic energy E_B^t

$$E_{\rm K}^{\rm t} = \rho V \delta v^2 / 2 = E_B^{\rm t} = (B^{\rm t})^2 V / (2\mu_0)$$

$$\downarrow$$

$$B_{\rm pos \perp}^{\rm t} = \sqrt{\mu_0 \rho} \delta v_{\rm pos \perp}$$

- 3. Isotropic turbulence $B_{\text{pos}\perp}^{\text{t}} = \sqrt{\mu_0 \rho} \delta v_{\text{pos}\perp}$ $\delta v_{\text{pos}\perp}^2 = \delta v_{\text{pos}\parallel}^2 = \delta v_{\text{los}}^2 = \delta v_{\text{3d}}^2/3 \downarrow$ $B_{\text{pos}\perp}^{\text{t}} = \sqrt{\mu_0 \rho} \delta v_{\text{los}}$ $B_{\text{pos}}^{\text{t}} = \sqrt{\mu_0 \rho} \frac{\delta v_{\text{los}}}{B_{\text{pos}\perp}^{\text{t}}/B_{\text{pos}}^{\text{t}}}$ $B_{\text{pos}}^{\text{tot}} = \sqrt{\mu_0 \rho} \frac{\delta v_{\text{los}}}{B_{\text{pos}\perp}^{\text{tot}}/B_{\text{pos}}^{\text{tot}}}$
- 4. Ratios of B components (B^t/B^{tot} or B^t/B^u) traced by angular dispersions

 $B_{\text{pos}\perp}^{\text{t}}/B_{\text{pos}}^{\text{u}} \sim \delta(\tan\phi) \qquad B_{\text{pos}\perp}^{\text{t}}/B_{\text{pos}}^{\text{tot}} \sim \delta(\sin\phi)$

DCF Equation

 B_{pos}^{tot} or B_{pos}^{u} can be estimated with the density, the line-of-sight turbulent velocity dispersion, and the angular dispersion

Test the DCF method with simulations	Previous simulations on DCF	Box length (pc)	Resolution	Gravity	Application
The estimated B strength may deviate from the true B strength due to non-satisfaction of the DCF assumptions.	Ostriker 2001	8	256 ³	Yes	ISM, clouds and clumps
Correction factors (Q_c) from simulations are required (e.g., ~0.5 for B_{pos}^u , Ostriker 2001):	Padoan 2001	6.25	128 ³	Yes	ISM, clouds and clumps
$B_{true} = Q_c B_{estimated}$ None of the previous simulations have conditions comparable to small-scale regions	Heitsch 2001	Scale- free	128 ³ -512 ³	No	Inside clouds. No significant gravity
with high-density and significant self-gravity.	Falceta- Gonalves 2008	Scale- free	512 ³	No	Inside clouds. No significant gravity

Our simulations

- Simulations of clustered massive star-forming regions (Box size ~ 1-2 pc)
- Ideal MHD simulation (RAMSES) + dust heating and radiative transfer simulation (POLARIS). Some MHD simulations adopted from Fontani 2018
- Different initial turbulent levels (*M*: 1-6.4) and magnetic levels (μ: 1.2-200): 11 models
- Adaptive Mesh Refinement (AMR). Resolution down to 13 AU.
- Consider 2 time snapshots for each model
 - First sink (protostar) forms
 - SFE=15%

Collaborators: Qizhou Zhang (CfA), Benoit Commercon (U. Lyon), Valeska Valdivia (CEA), Anaelle Maury (CEA & CfA), Keping Qiu (NJU)

Svnthetic 1.3mm maps

 $\mathcal{M}=1$, weak turbulence $\mu = 1.2$, strong B

 \mathcal{M} =6.4, strong turbulence μ = 200, weak B

Test assumptions of the DCF method

1. The mean B component is prominent (small angle approximation)? Only required for deriving B^u, not required for deriving B^{tot}

2. Energy equipartition?

Only satisfied in strong field cases. The B strength can be significantly overestimated in weak field cases

3. Isotropic turbulence?

Yes. Within a factor of ~2

4. B components ratio traced by angular dispersions?

Yes. With some criteria: R>0.1 pc. $\delta \phi < 25^{\circ}$ for B^t/B^u. Avoid using δ (tan ϕ) or tan $\delta \phi$ for B^t/B^u.

Factors affecting the measured angular dispersion

- Contribution from large-scale ordered field structure
 - Fit with specific field model (e.g., Girart 2006, Myers 2018)
 - The angular dispersion function (ADF) method: structure function (SF, Hildebrand 2009); auto-correlation function (ACF, Houde 2009, 2016)
 - The unsharp masking method (Pattle 2017)
 - The spatial filtering method (Pillai 2015)
- Signal integration and averaging along the line of sight
 - The ADF method (Houde 2009 , 2016)
 - The CY16 method (Cho & Yoo 2016)
- Contribution at scales smaller than turbulent correlation scale
 - The ADF method (Houde 2009, 2016)
- Observation: Beam smoothing and interferometer filtering
 - The ADF method (Houde 2016)

Cho & Yoo 2016

Pattle 2017

Test the ADF method on factors affecting the measured angular dispersion

1.Ordered field structure Works well

- 2. Signal integration along the line of sight May not be applicable in most cases
- 3. Effect of turbulence correlation Did not test
- 4. Observation: Beam-smoothing and interferometric filtering Works well

The Cho & Yoo 2016 method works well for line-of-sight signal integration at R>0.1 pc.

Discussion: compare B with turbulence (my recent thoughts)

• Compare B^u with turbulence: B^t/B^u

- DCF is not applicable when Bt/Bu >1, so the derived uniform B energy > turbulent kinetic energy
- Limitation of random fields: Angular dispersion cannot trace B^t/B^u >1
 - Dispersion of random φ: 52° <1</p>
 - Average of cosφ for random φ: 0.64
 - Maximum value of B^t/B^u and B^t/B^{tot} derivable from the ADF method are 0.76 and 0.6, respectively. (a2 should>0)

$$1 - \langle \cos[\Delta \Phi(l)] \rangle \simeq a_2' l^2 + \left(\frac{\langle B_t^2 \rangle}{\langle B^2 \rangle}\right)_{\rm or}^{\rm adf}$$

Compare B^{tot} with turbulence

• The energy equipartition assumption $(E_K^t = E_B^t)$ of DCF implicitly assumes the total B energy $(E_B^{tot} = E_B^u + E_B^t) >$ turbulent kinetic energy (E_K^t) .

Conclusion: B derived from the DCF method may not be properly compared with turbulence? (arguable)

Discussion: compare B with gravity

- Most previous DCF studies only derived the uniform B strength B^u
- If there is significant turbulent B energy, only comparing uniform B with gravity (i.e., use B^u in the derivation of mass-to-flux ratio to critical value) might underestimate the B support
- Suggestion: consider to use B^{tot} instead of B^u in the comparison

Outline: Magnetic fields in star formation

- Research history
 - B fields in early stages of low-mass star formation: JCMT POL-2 observations of low-mass starless Ophiuchus C
 - B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
 - Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations
- Current research and research plan
 - A compilation of all the previous DCF estimations (current research)
 - Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
 - ALMA polarization survey of B fields in NGC 6334 sources
 - Test the Koch 2012 method with simulations
 - Polarization survey of massive clumps/cores in IRDCs

⁺ B-n relation: $B \propto n^i$

106

n_H (cm⁻³)

B-N relation: supercritical or subcritical

A compilation of previous DCF estimations

- A compilation of all previous DCF estimations
- Re-calculate the B strength with simulation results³
- Investigate the B-n and B-N relation.

Pattle+ (2019). A compilation of B-n relation from previous single-dish DCF estimations

Myers+ (2021). B-n relation from DCF estimations of 17 low-mass dense cores.

Outline: Magnetic fields in star formation

- Research history
 - B fields in early stages of low-mass star formation: JCMT POL-2 observations of low-mass starless Ophiuchus C
 - B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
 - Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations
- Current research and research plan
 - A compilation of all the previous DCF estimations (current research)
 - ALMA polarization survey of B fields in NGC 6334 sources
 - Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
 - Test the Koch 2012 method with simulations
 - Polarization survey of massive clumps/cores in IRDCs

ALMA pol survey of B fields in NGC 6334 sources

- Continuation of a SMA pol survey (Zhang et al. 2014).
- Source: NGC 6334 I, In, IR, V, VI
- ALMA C1 + C4 configurations

Multi-scale pol survey of B fields of massive dense cores in Cygnus-X

- Goal: map most of the massive dense cores in Cygnus-X with JCMT and SMA.
- Pilot polarization survey with JCMT POL-2: obtained usable data of 4 cores.
- Parallel SMA proposal accepted every year but with no usable data.....

Test the Koch 2012 method with simulations

- Compare orientations of B, gravity, intensity orientation
- An alternative method to estimate B other than DCF.

B fields in the early stage of high-mass star formation: Polarization survey of massive clumps/cores in IRDCs

1. Study the dynamical state of cores in

2. Study the B-outflow relation in IRDCs.

Goal:

IRDCs.

Source	Distance	1.2 mm peak flux	1.2 mm integrated flux	Mass
	(kpc)	(mJy)	(Jy)	(M_{\odot})
G22.35-MM1	4.3	349.0	0.63	253.0
G23.60-MM2	3.9	272.0	0.71	233.0
G24.33-MM1	3.8	1199.0	2.03	1759.0
G24.60-MM2	3.7	230.0	0.53	483.0
G28.34-MM4 ^a	4.8	199.0	0.61	329.0
G28.53-MM1	5.7	227.0	1.66	1165.0
G28.53-MM2	5.7	129.0	3.01	2115.0
G28.53-MM3	5.7	126.0	2.91	2044.0
G31.97-MM2	6.9	311.0	0.90	929.0
G31.97-MM3	6.9	187.0	1.19	1222.0
G31.97-MM4	6.9	117.0	0.83	852.0
G33.69-MM1	7.1	205.0	1.04	1135.0
G34.43-MM4	3.7	221.0	0.86	253.0
G34.43-MM5	3.7	122.0	2.24	664.0

- ALMA pol survey of massive clumps in IRDCs catalogued by Rathborne+ (2006).
- ALMA proposal submitted

- other clumps in IRDC G28.34
- ALMA proposal submitted

Outline: Magnetic fields in star formation

- Research history
 - B fields in early stages of low-mass star formation: JCMT POL-2 observations of low-mass starless Ophiuchus C
 - B fields in early stages of high-mass star formation: ALMA observations of 3 massive clumps in IRDC G28.34
 - Test the Davis-Chandrasekhar-Fermi (DCF) method with numerical simulations
- Current research and research plan
 - A compilation of all the previous DCF estimations (current research)
 - ALMA polarization survey of B fields in NGC 6334 sources
 - Multi-scale pol survey of B fields of massive dense cores in Cygnus-X with JCMT and SMA
 - Test the Koch 2012 method with simulations
 - ALMA polarization survey of massive clumps/cores in IRDCs