

-11.5

12.0

12.5

- 13.0

-13.5

-14.0

12

15

log (v/Hz)

21

log (v F

LATEST RESULTS FROM EHT OBSERVATIONS

Juan Carlos Algaba (Universiti Malaya) On behalf of the EHT Collaboration

Contents

- The First Image of a Black Hole
- Polarization
- Multiwavelength
- Non-Horizon Science
- The Future

The First Image of a Black Hole

- The Event Horizon Telescope
- Array with 8 different facilities (2017)
 - Atacama Large Millimeter Array (ALMA), Chile
 - ALMA Pathfinder Experiment (APEX), Chile
 - James Clerk Maxwell Telescope (JCMT), Hawaii
 - Large Millimeter Telescope (LMT), Mexico
 - IRAM 30-meter Telescope, Spain
 - South Pole Telescope (SPT), South Pole
 - Submillimeter Array (SMA), Hawaii
 - Submillimeter Telescope (SMT), Arizona
- Wavelength: 1.3 mm
- Baseline: 160 m 10700 km
- Resolution: 25 µas

M. Johnson/SAO

The First Image of a Black Hole

- UV Coverage of M87
 - Fourier Transform of the 2D location of antennas as seen from the sky
 - As Earth rotates during the observation, those spatial frequencies form tracks in the Fourier plane (aperture synthesis)
- Good coverage maximizes imaging potential
 - JCMT giving shortest/longest baselines
- Scales large enough to reach horizon scale features confirmed

The First Image of a Black Hole

- April 10th, 2019: First image of a black hole shadow
 - M87*
- Kick-off for test of GR under strong conditions
- Interesting Facts:
 - Diameter: ~ 42 µas ~ 2.5 RSchw
 - Almost perfectly circular
 - Brightness Asymmetry
 - Direction of rotation
 - High brightness temperature
 - Synchrotron radiation

- April 10th, 2019: First image of a black hole shadow
 - M87*
- Kick-off for test of GR under strong conditions
- Interesting Facts:
 - Diameter: ~ 42 µas ~ 2.5 RSchw
 - Almost perfectly circular
 - Brightness Asymmetry
 - Direction of rotation
 - High brightness temperature
 - Synchrotron radiation

- For M87, the SMBH is the central engine for an extragalactic jet
 - Interplay of many different pieces
- Magnetic forces control inflow/outflow
- Jet formation/dynamics
 - GRMHDs
 - MAD/SANE

- Model Simulations
 - 2 models: SANEs and MADs
 - 200 snapshots via GRMHD simulation
 - 3 angles of inclination: 12° / 17° / 22° (a* <0) or 158° / 163° / 168° (a* ≥ 0)
 - Ion temperature vs electron temperature ratio
 - 6 values for upper limit: 1, 10, 20, 40, 80, 160
 - 2 values for lower limit: 1, 10
 - 5 spin speeds: a* = -0.9375, -0.5, 0, 0.5, 0.9375
- 2×200×3×6×2×5 = 72000 Models!

EXAMPLES OF SUCCESSFUL MODELS:

EXAMPLES OF FAILED MODELS:

Fractional Polarization (length & color of ticks)

- Average Polarization
- Azimuthal "wrapping" pattern of polarization

 Additional constrains on the model describing the physical conditions and environment around M87 SMBH

Multi-wavelength View of M87

- M87 2017 Multi-wavelength Campaign
 - Provide quasi-simultaneous MWL data for the 2017 EHT campaign
 - Resource for the community
- Up to 17 decades in frequency
 - Radio
 - VLBA, EVN, KVN, EAVN, VERA, GMVA, SMA, ALMA, EHT
 - IR-Optical-UV
 - Swift-UVOT, HST
 - X-rays
 - Swift-XRT, Chandra, NuSTAR
 - Gamma rays
 - Fermi-LAT, MAGIC, VERITAS, H.E.S.S

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the Hubble Space Telescope; the Neil Gehrels Swift Observatory; the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algaba

Multi-wavelength View of M87

- The study of the SED can provide us with useful information.
 - Physical properties that we can understand with the help of the models
 - Non-thermal electron (and positron) distribution
 - Size, speed, and magnetic fields of the emitting region
 - Injection of electrons into the emitting region
 - Magnetic vs particle energy density dominance
- Starting strategy: simpler single model-zone approach
 - Model 1: Focusing on the launch point of the jet
 - Maximizes contribution from compact regions
 - With/without radiative cooling (1a, 1b)
 - Model 2: Focusing on the large scales
 - Statistical fitting on X-rays

Multi-wavelength View of M87

- A single model is not enough to explain all the properties of M87
- Unrealistic fitted parameters (e.g., deviation from equipartition)
- A structured jet is necessary to understand the observational properties

Non-Horizon Science

- 3C 279
- Core perpendicular to jet direction
 - Resolved jet base?
 - Bend jet?
- Non radial component speeds comparable with large-scale kinematics

Non-Horizon Science

- Centaurus A
- 16x resolution: sub-day structures
- Asymmetric jet
- Collimation profile
- Universality?

7.0 7.5 8.0 8.5 9.0 9.5 log₁₀[brightness temperature (K)]

Event Horizon Telescope

...and more!

- Dynamical Studies of M87
 - Turbulence and structure of the accretion flow (Wielgus+2020, Satapathy+2022,...)
 - Jet precession
- Tests for General Relativity (Psaltis+2020)
- Constraints on black hole charges (Kocherlakota+2021)

The Future

- More about M87*
- Sgr A*
- More non-horizon sources
- ngEHT

