ALMASOP: The Formation of binary/multiple systems in Orion molecular cloud complex

Shanghai Astronomical Observatory ,Chinese Academy of Science
Qiuyi Luo

Low-mass star formation

Most of what we know of star formation in detail comes individual star formation.

Binary/Multiple star formation

JCMT SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution (PI:Tie Liu)

All-sky distribution of the 13188 PGCC sources(black dots) and the 2000 PGCC sources(blue dots) selected for TOP project, and 1000 PGCC sources (magenta dots) selected for SCOPE, overlaid on the 857 GHz Planck map.

Liu+ 2018

Sample : ~ 1300 Planck Galactic Cold Clumps(PGCCs) in $850 \mu \mathrm{~m}$ continuum
PGCC:Td~14K clumps $N\left(H_{2}\right)>5 \times 10^{20} \mathrm{~cm}^{-2}$
Time: $\sim 400 \mathrm{~h}$
Angular resolution: 14 arcsec

Yi+ 2018
PGCCs detected in Orion cloud, the marks thus represent identified dense cores.

ALMASOP : ALMA Survey of Orion Planck Galactic Cold Clumps (PI:Tie Liu)

- Sample: 72 sources selected from ‘SCOPE’ survey in Orion PGCCs
* Band 6:211-275GHz
* Spatial resolution: 0.33" (\sim 140au)
* Observation target: starless core and protostellar core candidates

Spectral	Central	Main molecular Lines	Bandwidth	Velocity Window Frequency (GHz)
			(GHz)	$\left(\mathrm{km} \mathrm{s}^{-1}\right)$
(6)	(7)	(8)	(9)	(10)
0	231.000000	${ }^{12} \mathrm{CO} \mathrm{J}^{2}=2-1 ; \mathrm{N}_{2} \mathrm{D}^{+} \mathrm{J}=3-2$	1.875	1.465
1	233.000000	$\mathrm{CH}_{3} \mathrm{OH}$ transitions	1.875	1.453
2	218.917871	$\mathrm{C}^{18} \mathrm{O} \mathrm{J}=2-1 ; \mathrm{H}_{2} \mathrm{CO}$ transitions	1.875	1.546
3	216.617675	$\mathrm{SiO} \mathrm{J}=5-4 ; \mathrm{DCN} \mathrm{J}=3-2 ; \mathrm{DCO}^{+} \mathrm{J}=3-2$	1.875	1.563

6:00:00.0

The Formation of binary/multiple systems in Orion Molecular Cloud complex

ALMA 1.3mm Binary/Multiple system

* In one clump, different dense cores form different stellar system, how do dense core properties affect the multiplicity of protostars?
* 43 density-limited protostellar cores

We first identified 13 binary/multiple systems, 1 binary system candidate and 29 single star systems within the dense cores.

Multiplicity of three subregion in OMCc

$$
M F=\frac{B+T+Q+\ldots}{S+B+T+Q \ldots}
$$

Multiplicity for the whole sample:

$$
C S F=\frac{B+2 T+3 Q+\ldots}{S+B+T+Q \ldots}
$$

$$
\begin{aligned}
& \text { MF :28\% } \\
& \text { CSF:51\% }
\end{aligned}
$$

Multiplicity fraction (MF): the proportion of binary / multiple in population Companion star fraction(CSF): the proportion of companion in population

Table 1. Stellar multiplicity in Orion Molecular Cloud Complex

Three sub-regions	Multiplicity Frequency	Companion Star Fraction	Sample number	Sample number
	(MF)	(CSF)	(single system)	(binary/multiple system)
	(2)	(3)	(4)	(5)
(1)	20%	40%	4	1
λ Orionis	29%	64%	10	4
Orion B	35%	48%	15	8
Orion Λ				

The Environmental effect on the multiplicity in the three subregions

Statistics of Core Properties																
Cloud	$N_{\mathrm{H}_{2}}\left(10^{22} \mathrm{~cm}^{-2}\right)$				$n_{\mathrm{H}_{2}}\left(10^{5} \mathrm{~cm}^{-3}\right)$				Core mass ($M_{\text {¢ }}$)				Core size (pc)			
	Min	Max	Mean	Median												
λ Orionis	2.5	18.2	9.5	8.2	0.7	5.6	2.9	2.5	0.06	5.41	1.07	0.77	0.03	0.19	0.08	0.09
Orion A	3.3	116.6	23.4	14.7	0.5	18.9	3.8	3.4	0.07	12.25	2.39	1.18	0.02	0.26	0.11	0.11
Orion B	3.2	99.1	38.4	38.4	1.3	40.8	15.6	15.8	0.14	11.36	2.66	1.81	0.03	2.25	0.16	0.10

Table 7
Physical Properties of PGCCs from the PGCC Catalog

Cloud	Number of PGCCs	Median					Mean				
		$\underset{\left(10^{20} \mathrm{~cm}^{N_{\mathrm{H} 2}}{ }^{-2}\right)}{ }$	$\begin{gathered} T_{\mathrm{d}} \\ \text { (K) } \end{gathered}$	β	$\left(10^{\frac{n_{2}}{n_{\mathrm{H}}} \mathrm{~cm}^{-3}}\right)$	$\begin{gathered} M_{\text {clump }} \\ \left(M_{\mathrm{C}}\right) \end{gathered}$	$\left(10^{2 \mathrm{C}} \mathrm{~cm}^{N_{\mathrm{HI}}}{ }^{-2}\right)$	$\begin{gathered} T_{\mathrm{d}} \\ (\mathrm{~K}) \end{gathered}$	β	$\left(10^{n^{2} \mathrm{n}_{\mathrm{IL} 2}} \mathrm{~cm}^{-3}\right)$	$\begin{gathered} M_{\text {clumpr }} \\ \left(M_{\odot}\right) \end{gathered}$
λ Orionis	177	3.2	16.1	1.7	2.2	4.9	6.4	16.0	1.6	4.7	8.5
Orion A	135	10.9	13.4	2.1	6.6	13.8	28.1	13.8	2.0	18.3	30.8
Orion B	154	6.4	13.9	2.0	4.1	7.7	13.4	14.0	1.9	9.1	16.8

Why λ Orionis has the lowest multiplicity?
Yi et al. 2018

Properties of natal dense cores

Parameter	Single system				Binary/Multiple system				KS-test	
	Number	Mean	Median	sigma	Number	Mean	Median	sigma	statistic	p-value
$N\left(H_{2}\right)\left(\times 10^{23} \mathrm{~cm}^{-2}\right)$	27	3.022	2.50	2.708	13	5.076	4.50	3.545	0.396	0.094
$n_{H 2}\left(\times 10^{5} \mathbf{c m}{ }^{-3}\right)$	27	7.102	4.00	6.867	14	16.507	13.00	16.885	0.452	0.032
\mathcal{M}	24	1.137	1.10	0.338	11	1.718	1.50	0.442	0.659	0.001
$M_{\text {core }}\left(\mathbf{M}_{\odot}\right)$	26	2.450	1.40	2.701	13	3.673	2.65	3.076	0.307	0.322
$M_{j c a n . s}\left(\mathrm{M}_{\odot}\right)$	27	0.710	0.62	0.354	13	0.596	0.520	0.379	0.309	0.269
$L_{\text {jeans }}\left(\mathbf{1 0}^{-2} \mathbf{p c}\right)$	27	3.888	3.395	1.913	14	3.144	2.529	2.021	0.378	0.111
$M_{\text {cnve+disk }}\left(\mathbf{M}_{\odot}\right)$	28	0.300	0.15	0.475	13	0.475	0.29	0.583	0.346	0.189
$M_{\text {enve+disk }}^{*}\left(\mathbf{M}_{\odot}\right)$	28	0.300	0.15	0.475	34	0.178	0.11	0.378	0.216	0.401
Size(pr)	27	0.092	0.09	0.002	13	0.102	0.09	0.045	0.219	0.737

The higher Mean density and H2 column density leadto
lower Jeans length, which resulting in more likely to fragmentation.

The higher Mach

 number thus relate to core accretion, core rotation.
$\mathrm{N} 2 \mathrm{H}+$ maps of 16 protostellar cores

The average median velocity gradients of cores that form single stars is $3.9 \mathrm{~km} /\left(\mathrm{s}^{*} \mathrm{pc}\right)$, and form multiple stars is $4.05 \mathrm{~km} /\left(\mathrm{s}^{*} \mathrm{pc}\right)$

Separation of Protostars in binary/Multiple systems

Range : 300-8900 au (<140 au cannot resolved)
Mean Separation: 2800 au
Bi-modal (500au \& 3500au)

Formation Mechanism Models:
Turbulent fragmentation(>1000 au) (Goodwin, Fishes, 2004) ; Disk fragmentation(<600 au)(Adams 1989, Bonnell 1994)

Different evolutionary stages of member protostars in binary/multiple systems within a dense core

Non-constant age in member protostars.
Different accretion history?

The comparison with the JCMT cores is qualitatively similar to MHD result: Region with high densities are more likely to form multiple system.

12 dense cores: single star 11 dense cores: multiple stars

Summary

- In our survey we calculate the multiplicity in OMCc : MF -28%, CSF: $\sim 51 \%$
- The formation of binary/multiple system is related to the natal dense core. Our study suggests that the H_{2} column density, mean density and Mach number of the core are the key factors.
- Non-constant age in member protostars is common.
- Compared with MHD simulation, the results reveals the multiple system ted to form at high-density region.

