AIMASOP: The Formation of binary/multiple systems in Orion molecular cloud complex

Shanghai Astronomical Observatory , Chinese Academy of Science Qiuyi Luo

JCMT Users Meeting

lqy@shao.ac.cn

Most of what we know of star formation in detail comes individual star formation.

Binary/Multiple star formation

Tobin et al. 2016

Stellar multiplicity is a ubiquitous phenomena in star formation process, but the origin of stellar multiplicity of protostar is still unclear.

JCMT SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution (PI:Tie Liu)

All-sky distribution of the 13188 PGCC sources(black dots) and the 2000 PGCC sources(blue dots) selected for TOP project, and 1000 PGCC sources (magenta dots) selected for SCOPE, overlaid on the 857 GHz Planck map.

Liu+2018

Sample : ~ 1300 Planck Galactic Cold Clumps(PGCCs) in 850µm continuum PGCC : Td ~ 14K clumps $N(H_2) > 5 \times 10^{20} cm^{-2}$ Time: ~ 400h Angular resolution: 14 arcsec

PGCCs detected in Orion cloud, the marks thus represent identified dense cores.

ALMASOP : ALMA Survey of Orion Planck Galactic Cold Clumps (PI:Tie Liu)

- Sample: 72 sources selected from 'SCOPE' survey in Orion PGCCs \bigstar
- Band 6 : 211-275GHz
- Spatial resolution: 0.33" (~140au)
- Observation target: starless core and protostellar core candidates

Spectral	Central	Main molecular Lines	Bandwidth	Velocity
Window	Frequency			Resolution
	(GHz)		(GHz)	$({\rm km~s^{-1}})$
(6)	(7)	(8)	(9)	(10)
0	231.000000	12 CO J=2-1; N ₂ D ⁺ J=3-2	1.875	1.465
1	233.000000	CH_3OH transitions	1.875	1.453
2	218.917871	$C^{18}O$ J=2-1; H ₂ CO transitions	1.875	1.546
3	216.617675	SiO J=5-4; DCN J=3-2; DCO ⁺ J=3-2	1.875	1.563

The Formation of binary/multiple systems in Orion Molecular Cloud complex

In one clump, different dense cores form different stellar system, how do dense core properties affect the multiplicity of protostars?

Identifying Binary/Multiple system in dense cores

43 density-limited protostellar cores *

Contour: SCUBA-2 850micron

Contour: ALMA ACA

We first identified 13 binary/multiple systems, 1 binary system candidate and 29 single star systems within the dense cores.

Contour: ALMA TM2+ACA

8.849 0.030 0.025 0.020 0.015 0.010 0.005

Multiplicity of three subregion in OMCc

Multiplicity fraction (MF): the proportion
 of binary/multiple in population
 Companion star fraction(CSF): the
 proportion of companion in population

Three sub-

(1)

 λ Orion Orion Orion

 Table 1. Stellar multiplicity in Orion Molecular Cloud Complex

regions	Multiplicity Frequency	Companion Star Fraction	Sample number	Sample numb		
	(MF)	(CSF)	(single system)	(binary/multiple s)		
	(2)	(3)	(4)	(5)		
nis	20%	40%	4	1		
В	29%	64%	10	4		
А	35%	48%	15	8		

Yi et al. 2018

The Environmental effect on the multiplicity in the three subregions

						Statistics	of Core Pr	operties						
$N_{\rm H_2}~(10^{22}~{\rm cm}^{-2})$				n_{H_2} (10^5 cm^{-3})		Core r	mass (M_{\odot}))		Core	size (p	
Min	Max	Mean	Median	Min	Max	Mean	Median	Min	Max	Mean	Median	Min	Max	Mea
2.5	18.2	9.5	8.2	0.7	5.6	2.9	2.5	0.06	5.41	1.07	0.77	0.03	0.19	0.08
3.3 3.2	116.6 99.1	23.4 38.4	14.7 38.4	0.5 1.3	18.9 40.8	3.8 15.6	3.4 15.8	0.07 0.14	12.25 11.36	2.39 2.66	1.18 1.81	0.02 0.03	0.26 2.25	0.11 0.16

Statistics of Core Dr.

Table 7 Physical Properties of PGCCs from the PGCC Catalog

of PGCCs			Median				Mean					
	$\frac{N_{\rm H_2}}{(10^{20}{ m cm}^{-2})}$	Т _d (К)	β	$egin{array}{ccc} eta & n_{\rm H_2} & M_{\rm clu} \ (10^2{ m cm}^{-3}) & (M_{\odot}) \end{array}$		$(10^{20} \text{ cm}^{-2})$	<i>T</i> _d (K)	β	(10^2 cm^{-3})			
7	3.2	16.1	1.7	2.2	4.9	6.4	16.0	1.6	4.7			
35	10.9	13.4	2.1	6.6	13.8	28.1	13.8	2.0	18.3			
54	6.4	13.9	2.0	4.1	7.7	13.4	14.0	1.9	9.1			

Why λ Orionis has the lowest multiplicity?

Properties of natal dense cores

Parameter		Single	system		Bina	ry/Mul	tiple syste	KS-test		
	Number	Mean	Median	sigma	Number	Mean	Median	\mathbf{sigma}	statistic	p-value
$N(H_2)(\times 10^{23} \text{cm}^{-2})$	27	3.022	2.50	2.708	13	5.076	4.50	3.545	0.396	0.094
$n_{H2}(imes 10^5 \mathrm{cm}^{-3})$	27	7.102	4.00	6.867	14	16.507	13.00	16.885	0.452	0.032
\mathcal{M}	24	1.137	1.10	0.338	11	1.718	1.50	0.442	0.659	0.001
$M_{core}({f M}_{\odot})$	26	2.450	1.40	2.701	13	3.673	2.65	3.076	0.307	0.322
$M_{jeans}({ m M}_{\odot})$	27	0.710	0.62	0.354	13	0.596	0.520	0.379	0.309	0.269
$L_{jeans}(10^{-2}{ m pc})$	27	3.888	3.395	1.913	14	3.144	2.529	2.021	0.378	0.111
$M_{enve+disk}(\mathbf{M}_{\odot})$	28	0.300	0.15	0.475	13	0.475	0.29	0.583	0.346	0.189
$M^*_{ m enve+disk}({f M}_{\odot})$	28	0.300	0.15	0.475	34	0.178	0.11	0.378	0.216	0.401
Size(pc)	27	0.092	0.09	0.002	13	0.102	0.09	0.045	0.219	0.737

The higher **Mean density** and H2 column density lead to

lower Jeans length, which resulting in more likely to fragmentation.

> The higher Mach **number** thus relate to core accretion, core rotation.

N2H+ maps of 16 protostellar cores

The average median velocity gradients of cores that form single stars is 3.9km/(s*pc), and form multiple stars is 4.05km/(s*pc)

N2H+ (J=1-0) by NRO 45-m telescope and contours are JCMT 850 μm data.

Separation of Protostars in binary/Multiple systems

Range : 300 - 8900 au (<140 au cannot resolved) Mean Separation: 2800 au **Bi-modal(500au & 3500au)**

Formation Mechanism Models :

Turbulent fragmentation(>1000 au) (Goodwin, Fishes, 2004); **Disk fragmentation**(<600 au)(Adams 1989, Bonnell 1994)

Different evolutionary stages of member protostars in binary/multiple systems within a dense core

DEC (J2000)

Non-constant age in member protostars. Different accretion history?

1.3mm dust continuum

A filamentary cloud in MHD simulation

The comparison with the JCMT cores is qualitatively similar to MHD result: Region with high densities are more likely to form multiple system.

Summary

- In our survey we calculate the multiplicity in OMCc : MF~28%, CSF: ~51%
- core are the key factors.
- Non-constant age in member protostars is common.
- at high-density region.

• The formation of binary/multiple system is related to the natal dense core. Our study suggests that the H2 column density, mean density and Mach number of the

• Compared with MHD simulation, the results reveals the multiple system ted to form