NEPSC2: The SCUBA-2 $850 \mu \mathrm{~m}$ survey in the North Ecliptic Pole

JCMT Users Meeting 2022
2022.02.25.

Hyunjin Shim (KNU, Korea) on behalf of the NEP team

Cosmic history - star formation and galaxy evolution

cosmic star formation history, Madau \& Dickinson (2014)

(when UV-SFR is uncorrected for dust attenuation)

Our understanding on the "dusty" star formation is still limited, which requires large FIR/(sub)mm surveys

Selection of dusty galaxies with large star formation - submillimetre

dusty star-forming galaxies
(more general term; see review by Casey et al. 2014)

- large stellar mass $\left(10^{10-11} \mathrm{M}_{\text {solar }}\right)$
- large SFR (100-1000 $\mathrm{M}_{\text {solar }} \mathrm{yr}^{-1}$)
- gas rich (selected samples, up to $\mathrm{z}>4$)
- frequently associated w/ AGN

Therefore SMGs are suspected to be ancestors of the most massive galaxies, and reproducing the observed properties of the SMGs through the galaxy formation model is still underway.

- number counts, redshift distribution
observed flux densities for $10^{12.5} \mathrm{~L}_{\text {solar }}$ galaxy at different redshift (Casey et al. 2014)

(extragalactic) Far-Infrared/Submillimeter surveys

There exist so many "deep fields", with uniqueness/specialty on
low cirrus, deepest, widest, has high spatial resolution optical/NIR images, can be reached by ALMA, ...

Ecliptic Conordinates

Ecliptic Poles

 :High visibility for space-based telescopes on the sun-synchronous polar orbit (AKARI, eROSITA, EUCLID, SPHEREx, ...)
multi-wavelength coverage from the previous studies

Equatorial Coordinates

Galactic Coordinates

Doi et al.(2015) AKARI FIR all-sky maps

Clerc et al.(2018) eROSITA simulations
THE EUCLID WIDE AND DEEP SURVEYS
imaging + spectroscopy $0.9-2 \mu \mathrm{~m}$

$850 \mu \mathrm{~m}$ survey on the NEP field (JCMT LP; M17BL007, M20AL005)

Kim et al.(2021) surveys around the NEP
$850 \mu \mathrm{~m}$ survey on the NEP field $\left(2 \mathrm{deg}^{2}\right) \quad$ - data obtained before 2020

$850 \mu \mathrm{~m}$ survey on the NEP field ($2 \mathrm{deg}^{2}$)

Figure 1. (Left) The noise map over the NEP field through JCMT Large Program M17BL007, based on the data obtained between 2017 and 2019 (9 fields completed). The vacant region in the center is where the previous SCUBA-2 survey (S2CLS; Geach et al. 2017) has covered, which is centered on the pole. In the center of each target field, the sensitivity ranges $\sigma_{\text {inst }}=1.7-2 \mathrm{mJy}$. With a caution, we consider that fields with $<2.5 \mathrm{mJy} \mathrm{rms}$ In its deepest area where more than two target fields overlaps, the map goes as deep as $\sigma_{\mathrm{inst}}=1.4 \mathrm{mJy}$.

$850 \mu \mathrm{~m}$ survey on the NEP field $\left(2 \mathrm{deg}^{2}\right)$

- data obtained before 2020
data reduction, map creation (using newly obtained data + archival S2CLS data), source extraction, flux deboosting, estimation of false detection rate and completeness

NEPSC2 (Shim+2020)
$\mathbf{5 4 9}$ sources (4σ selection, 10% false detection)
342 sources (4.5σ selection, $<3 \%$ false detection)
S2CLS (Geach+2017) - NEP
330 sources (3.5σ selection, 20% false detection)
196 sources (4σ selection, 6% false detection)
71 sources (5σ selection, negligible)

$850 \mu \mathrm{~m}$ survey on the NEP field ($2 \mathrm{deg}^{2}$)

Source number counts are consistent with previous single-dish surveys (S2COSMOS, S2CLS) at 4-15 mJy

Counterpart identification of $850 \mu \mathrm{~m}$ sources

Counterpart identification of $850 \mu \mathrm{~m}$ sources

FIR/radio correlation for star-forming galaxies implies that using radio data to find $850 \mu \mathrm{~m}$ source counterpart is an efficient way to find counterparts. However, the (radial) areal coverage is limited in our case.

Therefore we calculated probability of "being a true counterpart" and "not being a coincident match" for individual objects within a specific radius around each source, and decided the probable counterparts.

Counterpart identification of $850 \mu \mathrm{~m}$ sources

Color distribution of all [3.6 $\mu \mathrm{m}]$-selected objects (i.e., background objects) and radio-identified SMGs. Histograms are 'normalized' to yield the enclosed area to be 1 . The SMG population is more clearly distinguished in ($\mathrm{z}-[3.6 \mu \mathrm{~m}]$) colors and/or ([3.6 $\mu \mathrm{m}]-[4.5 \mu \mathrm{~m}])$ colors compared to the optical colors, therefore such color distribution could be used to select counterparts in short wavelengths in combination with the spatial offset.

Multi-wavelength photometry for the identified counterparts

Among 647 submillimetre sources, reliable counterparts are identified for 449 sources (69 per cent).

Number of identified counterparts is 516 .

```
HSC grizy (Oi+2020; used forcedCat)
IRAC 3.6, 4.5\mum
u-band (Takagi/Hwang+2007/Huang+2020)
CFHT ugriz + YJK (Takagi+2012/Oi+2014)
CFHT ugriz (Hwang+2007)
AKARI IRC -deep (Takagi+2012)
AKARI IRC -wide (Kim+2012)
WISE
MIPS 24\mum
Herschel PACS
Herschel SPIRE
```

Model and input parameters	Range
Star-formation history: sfh2exp	
e-folding time of the main stellar population model $[\mathrm{Myr}]$	$1000,3000,5000$
e-folding time of the late starburst population model $[\mathrm{Myr}]$	$30,100,9000$
Mass fraction of the late burst population	$0.0,0.01,0.1,0.3,0.5$
Age of the main stellar population in the galaxy $[\mathrm{Myr}]$	$500,1000,3000,5000,10000$
Age of the late burst $[\mathrm{Myr}]$	$50,100,300$
Stellar population: bc03	
Initial mass function	Chabrier
Metallicity	0.02
Dust attenuation: dustatt_modified_CF00	
Av_ISM	$0.3,0.6,1.0,1.6,2.3,3.0,3.8,5.0$
Power-law slope of the attenuation in the ISM	-0.7
Power-law slope of the attenuation in the birth clouds	-1.3
Dust emission: dl2014	
Mass fraction of PAH	$0.47,1.12,2.50,3.90$
Minimum radiation field	$1.0,5.0,10.0,25.0,40.0$
Power-law slope index $\tilde{\alpha}$ ($d U / d M$ a $\left.U^{\tilde{\alpha}}\right)$	2.0
Fraction illuminated from $U_{\text {min }}$ to $U_{\text {max }}$	0.1
AGN emission: fritz2006	
Ratio of the maximum to minimum radii of the dust torus	60
Optical depth at $9.7 ~ \mu \mathrm{~m}$	$1.0,6.0$
Radial gas density gradient in the torus, β	-0.5
Angular gas density gradient in the torus, γ	4.0
Full opening angle of the dust torus	100.0
Angle between the equatorial axis and line of sight	$0.001,60.100,89.990$
AGN fraction $\left(f_{\text {AGN }}\right)$	$0.0,0.1,0.15,0.2,0.3,0.4,0.45,0.5,0.6,0.7,0.75,0.8,0.9$
Radio emission: radio	
FIR/radio correlation coefficient q FIR	$1.5,1.7,2.0,2.15,2.3,2.45,2.58,2.7,2.8$
Power-law slope α of the synchrotron emission	0.8

SED fitting results

SED fitting results

Speagle et al.(2014)
star-forming galaxy main sequence (thick), ×3 SFR (thin)

$$
\mathrm{f}_{\text {burst }}=\mathrm{N}_{\text {burst }} / \mathrm{N}_{\text {total }}
$$

~ 40 per cent of SMGs show short timescale for starburst

SED fitting results

No statistical difference in SSFR between AGN-dominated vs. non AGN-dominated SMGs.

Possible radio-loud AGN candidates at $\mathrm{z}>3$

Summary

- 647 unique $850 \mu \mathrm{~m}$ sources are detected in the NEP field (extending coverage $0.6 \rightarrow 2 \mathrm{deg}^{2}$)
- Counterpart identification of SMGs in the $2 \mathrm{deg}^{2}$ of the NEP field
- Counterpart(s) were successfully identified for $69 \%(449 / 647)$ of the $850-\mu \mathrm{m}$ SMGs.
- The median value of the redshift distribution is $\langle\mathrm{z}\rangle=2.5 \pm 1.0$.
- Star formation, AGN contribution to SMGs
- Around 40% of SMGs show more than 3 times larger SFR than main sequence galaxies.
- AGN contributions are relatively high in z >3 SMGs.
$850 \mu \mathrm{~m}$ maps, source catalogs are publicly available
Counterpart identifications + multi-wavelength photometry + SED fitting results will be publicly available once the paper is accepted.

