NESS – The Nearby Evolved Stars Survey: CO observations, mass-loss rates, and dust/gas ratios

> Sofia Wallström FWO, KU Leuven

In collaboration with P. Scicluna, F. Kemper (ESO); J. Wouterloot (EAO); S. Srinivasan (UNAM); M. Jeste, K. Menten (MPIfR); A. Trejo (ASIAA); I. McDonald (U. Manchester); and the NESS collaboration

NESS – The Nearby Evolved Stars Survey

- Largest volume-limited and statistically representative survey of AGB stars in the Solar neighbourhood
 - \sim 850 sources within 3 kpc
 - "Wedding-cake" survey in tiers based on distance and dustproduction rate (DPR)
 - Observations of CO and submm continuum
 - Open Science philosophy: aim to be fully reproducible and open source

The NESS sample

Tier 0 Tier 1 Tier 2 Tier 3 Tier 4

Outlined points = mapping sample

NESS observations

- Successful proposals
 - ~1400 hrs JCMT continuum, CO (2–1), (3–2)
 - ~200 hrs APEX CO (2–1), (3–2)
 - ~450 hrs Nobeyama 45m CO (1-0)
 - ~80 hrs IRAM 30m
 - \sim 100 hrs ALMA/ACA higher resolution maps
- Lots of archival data
 - JCMT archival data can be incorporated automatically through pipeline reduction at CADC
 - Archival data from other sources generally requires manual reduction
- Current heterodyne reduction: JCMT RXA3 and HARP data as of July 2021, initial APEX sample of sources out to 2 kpc with Dec < -30°

KU LEUV

JCMT data reduction pipeline

- Python script calling Starlink functions, will be made available with paper publication
- Run on CADC servers, easy download of JCMT data
- For each source:
 - Find all matching archival JCMT data of the source, searching by coordinates and frequency range
 - Correct raw files for sideband offset and convert TA* -> Tmb
 - Reduce the data with ORACDR in batches grouped by receiver and backend
 - Output a FITS image and spectrum from the reference pixel
 - Fit all observed CO & ¹³CO lines together with a soft parabola function, using MCMC to estimate errors on each parameter

KU LEUV

• Output a table of values including total observing time, rms, and line fit parameters: peak, central velocity, width, and beta (shape factor)

Detection statistics – CO in JCMT and APEX

	Total	JCMT	ΑΡΕΧ
Number of sources	540	435	105
[CO (2-1); CO(3-2)]	[322; 437]	[250; 354]	[72; 83]
CO (2-1)	211	173	38
detections	(66%)	(69%)	(53%)
¹³ CO (2-1)	72	52	20
detections	(29%)	(29%)	(28%)
CO (3-2)	215	157	58
detections	(49%)	(44%)	(70%)
¹³ CO (3-2)	53	27	26
detections	(15%)	(10%)	(31%)

Note: ¹³CO only observed towards sources with sufficiently strong ¹²CO detection

[Preliminary results] – Empirical mass-loss rates vs DPR

- \sim 430 CO detections so far
- Empirical MLR formula from Ramstedt et al. 2008
 - Based on modeling of 10 sources
 - Valid for $10^{-7} 10^{-5} \ M_{\odot} \ yr^{-1}$
- Mostly consistent with canonical gas-to-dust ratio (within large uncertainties)
- More outliers at very low and high mass-loss

Wallström et al., in prep

[Preliminary results] – Gas-to-dust ratios

Wallström et al., in prep

[Preliminary results] – Gas-to-dust ratios

Range: 0.34 to 16871.53 Mean: 452.52 +/- 49.18 Median: 259.41

Wallström et al., in prep

[Preliminary results] – MLR vs velocity by tiers

Wallström et al., in prep

[Preliminary results] – Comparison with literature samples

Wallström et al., in prep

[Preliminary results] – Comparison with literature samples

- Samples from
 - Loup et al. 1993
 - Schöier & Olofsson 2001
 - Olofsson et al. 2002
 - Gonzalez-Delgado et al. 2003
 - Ramstedt et al. 2009
 - De Beck et al. 2010
 - Total = 616 data points
- Median values of both samples similar:
 - NESS MLR = 1.3e-6, v_{exp} = 12
 - Lit. MLR = 2.0e-6, v_{exp} = 12.5

Wallström et al., in prep

[Preliminary results] – Comparison with literature samples

- Directly comparing MLR and v_{exp} values for sources common to both samples
 - Divided mean NESS value by mean literature value

Number of sources	164	
mean MLR (NESS/literature)	1.17 ± 0.08	
mean v _{exp} (NESS/literature)	0.97 ± 0.01	

Wallström et al., in prep

[Preliminary results] – ¹²CO/¹³CO ratios

- Most ¹²CO lines optically thick, so ratios are lower limits
- 199 sources with both ¹²CO and ¹³CO detected
 - Range: -0.28 to 78.72
 - Mean: 6.13 +/- 0.58
 - Median: 4.11
- De Beck et al 2010 from a sample of 27 stars find
 - Mean: 10.27 ± 1.98
 - Median: 8.1

Wallström et al., in prep

KU LEUV

[Preliminary results] – Optically thin ¹²CO/¹³CO ratios

- Student project at IRyA-UNAM in Mexico
 - Dayra Torres working with Prof. Sundar Srinivasan (and me)
- Identified lines that appear to be optically thin
 - Eg. IRAS 05524+0723 [Betelgeuse] in CO 3-2, ratio 8.01

KU LEUV

[Preliminary results] – Optically thin ¹²CO/¹³CO ratios

- NESS total: 199 sources
 - Range: -0.28 to 78.72
 - Mean: 6.13 +/- 0.58
 - Median: 4.11
- Optically thin: 54 sources
 - Range: 2.51 to 61.20
 - Mean value: 12.71 ± 1.33
 - Median: 11.56

Wallström et al., in prep

Ongoing work

- Data collection and analysis continues
 - Upper limits on non-detections
 - CO maps of ~ 50 sources
 - Line shapes
 - Time variation
- Paper on JCMT pipeline and initial heterodyne data in prep
 - Data, tables, and scripts will be released alongside publication on NESS website, CDS, github and/or observatory archives

http://evolvedstars.space/