Growing in Dual

A SCUBA-2 Survey on Quasars hosting Lyman Alpha Nebula at Cosmic Noon

CHEN Chian-Chou (TC; 陳建州) Fabrizio ARRIGONI BATTAIA Marta NOWOTKA WANG Yu-Jan (王禹然)

arXiv:1810.10140, arXiv:2111.15392, arXiv:2111.15374, arXiv:2111.15375

Two-point auto-correlation functions

$$\xi_{2}(\Delta) = \frac{1}{V} \int d^{3}x \,\delta(\mathbf{x})\delta(\mathbf{x} + \Delta).$$

Ζ

Both hosted by halos with ~10^13 solar masses and would evolve into present day galaxy clusters

Much more extended in the early times

Chiang et al. 2017

Much more extended in the early times

Chiang et al. 2017

Much more extended in the early times

Much more extended in the early times

QSO sample [QSO-MUSEUM]

Quasars hosting Lya Nebula uncovered by MUSE

ELAN : Enormous Lyα Nebula

- Discovered with narrowband and VLT/MUSE
- 2 < z < 3.2
- Only ~5 % of relatively bright quasars (*M_i* < 24) show such nebulae
- Together with the brightness and the physical extend of Lyα, evidence suggest a large amount (10¹⁰-10¹¹ solar masses) of cool (T~10⁴K) and clumpy (C~100) gas.

Cantalupo+2014, Hennawi+2015, Cai+2017, FAB+2018

Classes of Lyα Nebula

Ouchi+2020

FAB, CCC, et al. 2018; Nowotka, CCC, FAB, et al. 2022

~1 mJy/beam r.m.s. at 850 micron

Nowotka, CCC, FAB, et al. 2022

Over-abundance in all four ELAN fields, by a factor of ~2-4

Nowotka, CCC, FAB, et al. 2022

Nowotka, CCC, FAB, et al. 2022

 Assuming all sources in excess of the field counts are associated with the central systems

- Assuming all sources in excess of the field counts are associated with the central systems
- Apply a conversion between S850 and SFR

- Assuming all sources in excess of the field counts are associated with the central systems
- Apply a conversion between S850 and SFR

~300 times the cosmic mean and comparable to what model predicts

- Assuming all sources in excess of the field counts are associated with the central systems
- Apply a conversion between S850 and SFR

Expanding the survey

QSO with smaller nebula sizes

FAB et al. 2018

More counts

Ubiquitous overdensity, confirming intimate coevolution between SMGs and QSOs

FAB, CCC, Nowotka in prep.

No coherent structures found

Wang, CCC, FAB in prep.

Some bound and some unbound

Wang, CCC, FAB in prep.

Take away messages

- We have found ubiquitous over-densities of submillimeter sources around a sample of 10 quasars hosting Lyα nebula, confirming intimate co-evolution between dusty star-forming galaxies and quasars.
- Follow-up studies are ongoing in order to confirm membership and understand their physical properties such as phase space distributions and the interstellar medium.
- SCUBA-2 remains a world-leading instrument in mapping the dust-obscured star formation over large scales.