

PITCH-BLACK Polarization and Timing Characteristics of BLACK Hole Jets

PI: Alex Tetarenko

on behalf of the PITCH-BLACK team

Relativistic Jets Launched From Black Holes

Credit: NRAO

Mooley et al. 2018

Credit: Event Horizon Telescope

Alex Tetarenko
JCMT Malaysia Meeting 2022

Credit: Ice Cube Collaboration

Jet Unknowns

- How are jets launched and accelerated?
- What are the initial conditions in the launching/ acceleration region?
- What role do black hole mass, spin, and accretion rate play in jet production?
- What factors drive jet evolution during outburst?
- What is the origin and structure of the magnetic fields in jets?
- How does the energy released by jets compare to other feedback processes, such as star formation?

Black Hole X-ray Binaries

- Black hole accreting matter from a companion star
- Rapidly evolve through bright outburst periods on timescales of days to months
- Emit across the electromagnetic spectrum

Types of Jets

Compact jets

Jet ejections

Credit: J. Miller-Jones

Alex Tetarenko
JCMT Malaysia Meeting 2022

Jet Outburst Evolution

OUTBURST X-ray luminosity 1035 1033 Time (days)

Very Long Baseline Interferometry (VLBI) Studies

J.Y. Kim et al., 2020

Alex Tetarenko
JCMT Malaysia Meeting 2022

VLBI in X-ray Binaries

Dhawan et al. 2000; Paragi et al., 2002; Tudose et al., 2010

Alex Tetarenko

Credit: R. Fender

JCMT Malaysia Meeting 2022

What can we learn from time domain studies of jet emission?

- Map out the jet size scale.
- Probe jet geometry, beyond what we can accomplish with VLBI.
- Measure jet speed, energetics, B-Field.
- Probe the connection between the accretion flow and the jet.

OIR Variability Studies

Cross-correlation Functions

Casella et al. 2010, Vincentelli et al. 2018

Fourier Domain Metrics

Malzac et al. 2018

Radio/Sub-mm Variability Studies

- Radio jet emission is highly variable
- Short timescale variability not well studied
- Many challenges with variability studies in the radio/sub-mm

Nipoti et al., 2005

Sub-array with Interferometers

Split full array into up to 3 sub-arrays

Implementing VLA Sub-arrays

The Pilot Study: V404 Cyg

Tetarenko et al., 2017

Miller-Jones, Tetarenko et al., 2019

 Track rapid flaring from repeated jet ejections!

Implementing VLA Sub-arrays

The Pilot Study: V404 Cyg

Tetarenko et al., 2017

Miller-Jones, Tetarenko et al., 2019

 Track rapid flaring from repeated jet ejections!

Single Dish mm/sub-mm Timing

- Pilot study with JCMT completed.
- Challenges more on the software side.
- Our team has a new LMT program recently approved.

Tetarenko et al. in prep.

Implementing VLA Sub-arrays

Tetarenko et al., 2019

VLA + X-ray: Cyg X-1

Alex Tetarenko
JCMT Malaysia Meeting 2022

Case Study: MAXI J1820+070

Measuring Timing Metrics - PSDs

Tetarenko et al., 2021

Longer Timescales

 10^{1}

 10^{0}

 $8.5~\mathrm{GHz}$

- 7.45 GHz

→ 5.25 GHz

Trends with Electromagnetic Frequency Band!

Tetarenko et al., 2021

Measuring Timing Metrics - Time-lags

**Also check out Tetarenko et al., 2019 radio timing work on Cyg X-1!

Tetarenko et al., 2021

Modelling Timing Metrics

Implement classic
 Blandford & Königl jet
 model.

To constrain speed:

- Lower limit: pair production in jet base
- Upper limit: accretion power

Zdziarski, Tetarenko et al., 2022 Tetarenko et al., 2021

Modelling Timing Metrics

- Implement classic Blandford & Königl jet model.
- To constrain speed:
 - Lower limit: pairproduction in jet base
 - Upper limit: accretion power

Zdziarski, Tetarenko et al., 2022 Tetarenko et al., 2021

Polarimetry in X-ray Binaries

- 2 key quantities of polarized light: LP and PA
- Study B field strength, orientation, geometry, timevariable phenomena...
- Polarimetry mostly limited to radio/optical studies (e.g. see Hannikainen et al. 2000; Corbel et al. 2000; Fender et al. 2002; Brocksopp et al. 2007; Curran et al. 2014; Russell et al 2015; Russell et al. 2018).

Blundell et al., 2018

Looking ahead...

Sub-mm Coverage of MAXI J1820+070

Looking ahead...

Sub-mm Coverage of MAXI J1820+070

PITCH-BLACK

- Anchored by a JCMT Large Program.
- Aim to combine the diagnostic power of submm timing and polarimetry, with multiwavelength coverage, to create a detailed probe of BHXB jets.
- Will observe across outburst accretion states, and different BHXB sources.

https://tetarenk.github.io/PITCH-BLACK

Target Selection and Triggering

- Observe 6 BHXBs throughout outburst
 - 4 short campaigns (8x 4 hrs epochs)
 - 2 long campaigns (16x 4 hrs epochs)
- Identify outburst via X-ray all-sky monitors or optical monitoring.
- Triggering evaluated through the decision tree.
- Cadence largely set by source.

Membership Overview

- Currently 43 members from seven EAO regions (China, Japan, Taiwan, Indonesia, Canada, UK, and Korea)
- Support from non-member institutes across three continents
- Coordinators chosen for each region. Any volunteers for Malaysia?
- Executive committee for decision making set up.

Management and Staffing

- Infrastructure to facilitate communication:
 - Wiki page
 - Slack group
 - Group email list
 - Project website
 - Project Github
 - Google docs suite: Members list, MW support, working groups, known BHXB candidates...

Work so far...

- No triggers yet but...
 - We have produced a code-base for a data analysis pipeline.
 - In process of setting up a data base to house data and products: CANFARs VOSpace + links on Wiki.
- All EAO region team members have access to raw/reduced data and advanced data products.

New Facilities and Techniques

- Current facilities to add to our suite of fast timing observatories: LMT, Gemini, JWST
- Many next gen facilities to look forward to: ngVLA, ALMA-2030, SKA, ngEHT...
- Jet eclipse mapping
- Higher order Fourier methods (e.g., bispectrum; Arur et al. 2019)

Maccarone et al. 2020

Summary

- Time domain and polarimetry analysis is an incredibly powerful tool for unlocking complicated jet physics.
- We can do timing at long mm/sub-mm wavelengths too!
- We can derive fundamental jet parameters from light curves alone!
- PITCH-BLACK represents a major step forward for studying black hole jet and accretion physics!

Thank you!

Want to get involved? atetaren@ttu.edu

