An Overview of BISTRO and a Look Ahead at BISTRO-3

Janik Karoly

<u>B</u>-fields In <u>ST</u>ar-forming <u>R</u>egions <u>O</u>bservation

- Determine the effect of magnetic fields on forming:
 - Filaments
 - Molecular clouds
 - Cores
 - Stars
- Measure and compare magnetic field strength against:
 - Turbulence
 - Gravity

2nd September 2022

EAO Science Seminar

BISTRO "Generations"

- BISTRO-1: Follow up of Gould Belt objects, nearby star-forming regions – high resolution (~ 2000 AU or 0.01pc)
- BISTRO-2: Start to push the envelope, further away and intermediate mass star-forming regions (~0.05-0.1pc)
- BISTRO-3: Two extremes, nearby dim prestellar cores and far away massive star-forming regions (Galactic Centre)

2nd September 2022

Publications to date

- All BISTRO-1 objects published
- 3 BISTRO-2 papers published, 2 submitted, 5 in prep
- 6 BISTRO "2-G" papers published, 1 submitted, 2 in prep
- 1 BISTRO-1
 Summary paper
 published, 2 in prep

Science from BISTRO

- Found a general misalignment with outflows and field around 15°-35°
 - Misalignment not the mechanism to reduce magnetic braking
 - Smaller misalignment -> equal energy of B-field and kinematics
- Variation of alignment between sub-filament directions and magnetic fields from diffuse into dense
- Agreement with Planck results of magnetic field and filament orientation
- Determining how magnetic field structures vary along spatial scales

2nd September 2022

EAO Science Seminar

Observations of Magnetic Fields

Observations of Magnetic Fields

Observations of Magnetic Fields

Testing Grain Alignment with IRC+10216

DEC (J2000)

- How are grains aligned in IRC+10216?
- Carbon-rich CSE
- Radial k-rat alignment from HAWC+
- What does POL-2 see?

2nd September 2022

BISTRO-3

	R.A.	Dec.	Dist.	Lin. Res.	Peak FD
Source	(J2000)	(J2000)	(kpc)	(pc)	(mJy/beam)
		Prestel	lar Cores	;	
L1544	05:04:16.6	+25:10:48	0.135	0.009	314
L1498	04:11:00.0	+24:58:00	0.140	0.010	~ 140
L43	16:34:29.3	-15:47:11	(Oph)		369
L1517B	04:55:18.8	+30:38:04	(Tau)		136
B68 (L57)	17:22:38.2	-23:49:34			58
FeSt 1-457	17:35:45.0	-25:33:12	(Pipe)		~ 180
		Zhang+	14 Source	es	
G192.16	05:58:13.6	+16:31:58	1.9	0.130	1993
G35.2N	18:58:13.0	+01:40:37	2.2	0.150	8588
G240.31	07:44:52.0	-24:07:43	4.7	0.321	2157
I18360	18:38:40.7	-05:35:04	4.8	0.328	5854
$W51 \ e2/e8$	19:23:43.9	+14:30:35	6.3	0.431	61740
		Other massive filaments			
G28.34+0.06 (Dragon)	18:42:50	-04:03:30.3	4.8	0.328	4934
Sgr B2	17:47:20.4	-28:23:07	8	0.547	131737
G0.253+0.016 (Brick)	17:46:09.7	-28:43:31	8	0.547	4225
Clouds e/f	17:46:48.0	-28:32:00	8	0.547	5115
20 km/s cloud	17:45:38.0	=29:05:34	8	0.547	6066
2nd September 2022	EAO Science Seminar				

- Dim, small and nearby
- Various stages of evolution
- Far away but massive and bright

First BISTRO-3 Source: L43

L43 – A dense molecular cloud

L43 – Data Reduction

2nd September 2022

EAO Science Seminar

Calculation of Magnetic Field Strength

- Many methods to do this
 - Davis Chandresekhar Fermi Method
 - Angular Dispersion Function
 - Velocity gradient technique

"Classical" DCF:

$$B_{pos} \approx 9.3 \sqrt{n_{H_2}} \frac{\Delta V_{NT}}{\delta \theta}$$

$$\mathbf{M}_A = \frac{\sigma_{NT}}{\nu_A} = \frac{\sigma_\theta}{Q}$$

$$v_A = \frac{B}{\sqrt{4\pi\rho}}$$

$$\lambda = 7.6 \times 10^{-21} \frac{N_{H_2}}{B_{pos}}$$

The Galactic Centre

- Originally 4 proposed fields: Sgr B2, Clouds e/f, Brick and 20km/s Cloud, ~14 hrs each
- Change to ~4 hrs each and add 10 fields, synthesize with M20AP023 observations
- Will end up with a mosaic across the CMZ from Sgr B2 to Sgr C

2nd September 2022

Ordered large-scale fields

- D~8300 pc
- JCMT beamsize ~ 15"
 - ~ 0.6pc resolution

Field strengths on order of 10s of mG 2nd September 2022

20km/s Cloud

- From CHIMPS data, multiple component CO profiles
- Hypothesis an ambient material (moving close to 20km/s) and a core

20km/s Cloud

- Field strengths on order of mG
- Finds that on this large scale, magnetic field does support against gravity

2nd September 2022

Ordered large-scale fields

Sgr B2

H II Regions

JCMT resolution ~ 0.6pc ALMA 3mm resolution ~ 0.06 pc 2nd September 2022

HAWC+ 89µm — Planck 353 GHz — -24°22' 23' Dec (ICRS) 24' 25' **850**µm G: 154μm B: 89μm 26' 16^h26^m40^s 35^s 30^s 25^s 20^s RA (ICRS) Planck resolution ~ 0.4pc JCMT resolution ~ 0.01 pc EAO Science Seminar

 N_{H_2} Col. Den. RGB image with HAWC+ 89 μ m, POL-2 850 μ m and Planck B-field vectors

Filamentary structures in Sgr B2

Conclusions/Summary

- BISTRO-1/2 have already provided interesting results about magnetic fields in nearby, small-mid size star-forming regions
 - Misalignment of B-field with protostellar outflows
 - B-field perpendicular or parallel to filaments depending on density or material flow
 - B-fields contributing to the energy budget of clouds on par with kinetic and gravitational energies
- BISTRO-3 aims to expand on these results in the smallest and most massive star-forming regions
 - L43 shows B-field potentially aligned with outflow cavity walls and B-field is losing out to turbulence and gravity
 - Large, structured magnetic fields in the Galactic Center can infer global magnetic field strengths of cloud as well as smaller scale magnetic field roles based on comparison with nearby regions and Planck/POL-2

2nd September 2022

Thank you!!!

