ive-hundred-meter Aperture Opherical radio elescope

Bridging the Centuries from Arecibo to CHAFS

中國天喉 HST Five-hundred-meter Pperture Spherical radio Telescope *Guizhou, China*

1994 proposed 2007 funded 2020 operation

ACCEPT *Puerto Rico* (1963-2020)

1963 commissioned mercury spin, double neutron stars, the first exoplanet etc. **1993** Nobel prize in Physics 2020.12.1 collapsed

William E. Gordon **Cornell University**

Beautiful Mistake

1958.5.29 proposed by W.E. Gordon as an ionosphere radar Gordon: 300 m

- Ken Bowles: 30 m
- 1958 URSI meeting: Gordon also 30m

ARPA-(Advanced Research Projects Agency) decided to sponsor a Super-dish!

"This is the President of the United States speaking. Through the marvels of scientific advance, my voice is coming to you from a satellite circling in outer space ... America's wish for peace on earth and good will to men everywhere."

1958.7 National Aeronautics and Space Agency

With Space program out of its portfolio, **ARPA** decided to fund **Arecibo** as its first project. **ARPA** later became **DARPA**

We must formulate and put forward for other nations a much more positive and constructive picture of sort of world we would like to see than we have put forward in past.

Eisenhower 1958

George Kennan 1946 "Long Telegram"

Rendong Nan

Yuhai Qiu

SHOT ON MI PHDTO BY OI

Pointing 1 min - 10 min DEC -14d ~ 66d Mode drift, OTF, track

Ubservabes HI 21cm (imaging & a)galaxies) **Pulsars (FRBs)** b **Molecular Spectroscopy** C **JBI** d SETI e

NO large-scale survey has simultaneously observed HI and pulsar. Why?

International Journal of Modern Physics D. Vol. 20, No. 6 (2011) 989-6024 St World Scientific Publishing Company DOI: 10.1142/90918271811009355

Li & Pan, 2016, Radio Science, 51, 7 Li et al. 2018, IEEE Microwave, Vol. 19, Issue 3

continuous coverage **70 MHz~3 GHz**

Review

THE FIVE-HUNDRED-METER APERTURE SPHERICAL RADIO TELESCOPE (FAST) PROJECT

RENDONG NAN*45, DI LI*4.5, CHENGJIN JIN*, QIMING WANG*, LICHUN ZHU*, WENBAI ZHU*, HAIYAN ZHANG*.¹, YOULING YUE? and LEI OLAN?

Nan, Li, Jin et al. 2011, IJMR-D, 20, 989 (Citations google >700 ADS >400)

Arecibo GALFA-HI Survey

Utilizing an electronic CAL-injection signal

Novel Technique HI/pulsar commensality!

The CAL Problem

- "winking" CAL at the pulsar backend sampling rate $(~100 \mu s)$
- Pulsar backend trigger automatic CAI

by Marko Krćo', Yan Zhu', Richard N. Manchester², C patent Ryan Lynch¹, Di Li¹, Fetix J. Lockman³, William Cole pending Mengting Liu¹, Naomi M. McClure-Griffiths², Zhichen F Weiwei¹, Youling Yue¹

 post-processing pulsar data to recover Tsys

• CAL timing information with all groups.

PATENT APPLICATION: A HIGH FREQUENCY WHITE NOISE INJECTION SYSTEM

Commensal Radio Astronomy FAST Survey **Un**precedented commensality pulsar, galaxy, imaging, and FRB e ver rotation-22.5 deg; translation-31.8 arcmin **Proprietary** high-cadence CAL injection FAST 'big data' stream • 6 GB/s 10 PB/ year FAST receiver retailion=0.0 66

CSIRO

FAST

in Space

Di Li, Pel Wang, Lei Qian, Marko Kwo, Alan Dunning, Feng Jiang, Youfing Yos, Chenjin Jin, Yan Zhu, Zhichen Pan, and Rendong Nav

Harris of the sense of the light's senses and the proof to the sense of the sense o

Right ascension affect (aromin)

XAO

- product to the end of the second of the

S

多科学目标

同

时

扫描

巡

天

Astronomy

FAST

Li et al. 2018, Invited Review IEEE Microwave, Vol 19, Issue 3, p112

- The CRAFTS' HI product, namely HI-FAST, achieves absolute flux calibration.
- 18% of CRAFTS completed.
- •<1% flux uncertainty! (cf. GALFA,</p> HI4PI, LAB)
- The pipeline is ready.
- The first data release expected in two months.

HIFAST HI Column Density

Right Ascension (dog)

CRAFTS: galaxies

08

z=0-0.15

91

ALFALFA CRAFTS

ndshift

00

cf. Li+2018; Zhang+2020

20

(哈哈里远镜拍摄)

FRB 121102 localization

"The most important discovery in astronomy since LIGO" –AAS Press **2017**

Contents [hide]

- 1 Welcome to the FRB Theory Wiki!
- 2 Contributing to the Wiki
 - 2.1 Rules and Guidelines
- 3 Summary Table

> 50 categories of models No clear consensus

Welcome to the FRB Theory Wiki!

ii ereenie e		110019 11111		Engenny	Emission	LF Redia	HF Badle	Minnearen	This	0.0	Xenter	Camma ray	0.00
Name	 Category 	Progenitor	Type	Nechaniam *	Mechanism	Counterpart	Counterpart	Counterpart	Counterpart	Counterpart	Counterpart *	Counterpart	Counterpart
NS-IIID Accretion	Accretion	NS-WD	Repeat	Mag. reconnection	Ourv.	Yes	-	-	-	-	-	Yos, but unlikely detectable	-
AGN-KEH	AGN	AGN-KBH Interaction	Repeat	Maser	Synch.	Yes	-	-	-	Supernova	-	Yes	Yes
AGN-55	AGN	AGN-Strange Star Interaction	Repeat	Electron oscillation	-	Yes	-	-	-	Themai	-	Yes	Yes
Jet-Caviton	AGN	Jet-Caviton Interaction	Both	Electron acattering	Dremest.	Yes	Yes	-	-	-	-	Possible GRB	Yes
Wandering Beam	AGN	Wandering Beam	Repeat	-	Synch.	Yes	-	-	-	-	Yes		-
NS to BH (DM- induced)	Collepse	NS to BH	Single	Mag. reconnection	Curv.	Yes	-	-	-	-	-	-	Yes
NS to KNSH	Collapse	NS to KNIDH	Single	Mag. reconnection	Curv.	Yes	-	-	-	-	Possible aftergiow	Possible GRB	Yes
NS to Quark Star	Collepse	NS to Quark Star	Single	β-decay	Bynch.	Yes	-	-	-	-	Yes	Yos	Yes
88 Crust	Collapse	Strange Star Crust	Single	Mag reconnection	Curv.	Yes	-	-	-	-	-	-	Yes
Asion Cloud and BH	Collision / Interaction	Supertadiant Axion Cloud and BH	Repeat	Laser	Synch.	Yes	-	-	-	-	-	-	Yes

CRAFTS reveals a high event rate >120K per day!

Zhu, Li+ 2020 ApJL Niu, Li+ 2021 ApJL

Big Bang

2019.5.20 CRAFTS scan: discovery

FRE 190520

CRAFTS Inature

2022.6.30

FRB 190520: the *hipper* and *Weirder brother of 121102*

0.6

FAST: D. Li, C.-H. Niu, W.-F. Yu, J.M. Yao, P. Wang, Y.-K. Zhang, Y. Feng, B. Zhang, W.-W. Zhu, J. Cordes, S. Ocker et al.
Parkes: Shi Dai, Yi Feng, Chen-Hui Niu. Di Li et al.
Effelsberg/EVN: Marilyn Cruces, Bo Zhang, Chenhui Niu et al.
JVLA: Casey Law Wen-Fei Yu, Sarah Burke-Spolaor, et al.
GBT: Yi Feng, Shi Dai, Ryan Lynch, Sarah Burke-Spolaor et al.
VLBA: Wen-Fei. Yu, Casey Law, Shami Chatterjee et al.
Optical/High E: Chao-Wei Tsai, Chris Bochenek, Yuu Niino et al.

*The first persistently active FRB"
*The highest DM_{host} ~ 912 pc cm-3
*The 2nd compact PRS confirmed to co-locate with a FRB

Extreme Activity: ~300 bursts by FAST, JVLA, Parkes, GBT and VLBA in multiple bands.

FRB 121102 **Burst Rate Energy Distribution**

1652 bursts in 50 days Peak rate ~ 122 hr-1

Burst rate LN+Cauchy Missed fraction scaling 95% confidence limit

Bimodel

$-(\log E - \log E_0)^2$

Li*, Wang et al. 2021 Nature, 598,267

 10^{39}

China's Top 10 scientific breakthroughs in 2021

- 1. Tianwen 1 landed on Mars
- 2. China's space station core Tianhe in orbit
- 3. Synthesizing starch from carbon dioxide
- 4. Chang'e-5 returned with lunar rocks
- 5. Cryo-EM structure of an extended SARS-CoV-2
- 6. FAST caught largest set of fast radio bursts
- 7. High-performing woven lithium-ion fiber batteries

8. Programmable superconducting quantum processor9. Soft robot 10,000 meters under the ocean's surface10.Spatio-temporal dynamics of bird migration routes

FAST 插获世界最大快速 射电暴样本

该研究首次展现了快速射电量的完整能谱 深入揭示了快速射电量的基础物理机制。

Unified characterization of all FRBs - ORM

 $\sigma_{\rm RM} = 218.9 \, \rm rad/m^{\circ}$ 20190520B $\sigma_{\rm RM} = 30.9 \, \rm rad/m^2$ 20121102A $\sigma_{\rm RM} = 6.3 \text{ rad/m}^2$ 20180301A $\sigma_{\rm RM} = 6.1 \text{ rad/m}^2$ PRS 20190417A $\sigma_{\rm RM} = 3.6 \text{ rad/m}^2$ 20190303A $\sigma_{RM} = 2.5 \text{ rad/m}^2$ 20201124A o_{HM} = 0.12 rad/m⁴ 201809168 ORM not Fitted 20190711A ORM not Fitted 20190604A 101

氢气的常线自吸收 (HN arrow Self-Absorption) 阿雷西博望远镜

创新天文观测方法—测量暗云的年龄(氢记年) 'Hydrogen-dating' the molecular clouds, constrains the time scale of star formation

10 15 Vlsr (km/s)

JCMT Large program **ALOHA** (**A** Lei **O**f the **H**abitat and **A**ssembly of IRDCs)

ALOHA Science Highlights - Joint study with the FAST 500-m telescope

 \therefore FAST HI-21cm self-absorption (HINSA and HISA) — cold atomic envelope of IRDC — FAST data: 42 dense clumps are selected for FAST HI-21 cm observation. (in progress)

- \therefore Initial result: IRDCs tend to have broad HI absorption dip ($\Delta V = 5-10$ km/s) — cold atomic gas around IRDCs but with large velocity dispersion
 - dynamical conditions to be further analyzed (turbulence, shock, infall, interaction ?).

candidate HI-absorption in IRDC

XUEJIAN JIANG 蒋雪健 (EAO Fellow 2019-22) **STAFF SCIENTIST Zhejiang Lab**

Current Research Projects --Astrochemistry

- 1. Analyze the chemical composition of the ISM with models and H₂ column density from dust continuum data (SCUBA-2 etc.) [with Donghui Quan, Thomas Bisbas, Di Li et al.]
- Study the astrochemical properties of the Central Molecular Zone of the Milky Way with ALMA "line forest" (e.g. carbon-chains or Complex Organic Molecules)

Zhejiang Computational Astronomy

Now: 5 PIs, 23 full time staffs, 9 postdocs

Zeeman Effect (**B**) in Molecular Gas

-10

Nearby

n

Goldsmith (2003)

Zeeman

Vlsr (km/s)

10

15

HINSA氢气的窄线自吸收

The First HINSA Zeeman Detection

•ISM field strength in Taurus $B = 3.8 \pm 0.3 \mu G$ •Reveals a weak coherent field that puts the molecular cores into supercritical state

•Provide an observational foundation for solving the "magnetic flux", one of the three classical problems, in star formation

"A new (创新) method that informs us of star formation." - 《Nature》 comment, senior editor "An extremely important (极端重要) observation ..." - 《Nature》 perspective, Prof. Crutcher "...revolutionary (革命性) for the star formation community" - 《Science》 news, Prof. Casellli

H

Ching et al. 2022

CRAFTS to draw the first 3D interstellar magnetic-field-strength map

HI + HINSA Zeeman

Resolution ~1 degrees > 20000 pixels

Science Driver

Galactic dynamo?
Fermi bubble
Field reversal
Magnetic dissipation
Galactic evolution

Hutschenreuter et al. 2021 55190 pints of RM

250

deal rad m

2016

Farrar

Galactic B-field model

HOME / ANNOUNCEMENT / Call for FAST Science Observing Proposals

ANNOUNCEMENT

Call for FAST Science Observing Proposals

2022-03-31

The Five-hundred-meter Aperture Spherical radio Telescope (FAST), a Chinese national science facility, welcomes submission of science proposals for the upcoming observing period scheduled from August 2022 to July 2028. Users of any nationalities or affiliations are invited to submit proposals before the deadline at 16:00 UT on 15th May 2022 through the website http://fast.bao.ac.cn/proposal_submit. Information on the techniques and current performance of the telescope are available at http://fast.bao.ac.cn.

The FAST science operation covers both regular science programs and large programs. Please note that this Call only solicits regular science proposals, which usually take observing time no more than 100 hours. It is anticipated that about 2000 hours of observing time will be allocated to regular science programs. All proposals should make it clear that why the FAST is necessary for the requested observations. Based on the statistics of the last observing period, the oversubscription rate is 3.6 on average, and reaches 5.2 for the LST range of 18 to 22 hours, which approximately corresponds to the Galactic plane time for the FAST.

The FAST started its full operation in January 2020, and is now completing its second science observing period. A list of previously accepted science proposals, including both regular science and large programs, can be found at https://fast.bao.ac.cn/cms/category/approved_projects_en/. Note that information of future approved proposals, including titles, PI names, abstracts, and scheduling priorities, will also be posted at the website. Science data obtained through a regular science program have a proprietary period of 12 months. Please see the FAST Data Policy posted at https://fast.beo.ac.cn/cms/article/86/ for more details. To avoid duplication, proposers should query the FAST archive at https://fast.bao.ac.on/observation_log/observed_source_search before planning observations to check if any existing data meet their scientific goals.

Should you have any further question about the telescope operation and proposal submission, please contact us at fastproposal-support@nao.cas.cn.

CoP fast.bao.ac.cn/cms/article/164/

Help fast-proposal-support@nao.cas.cn

FAST

in Space

Di Li dili@nao.cas.cn

5 Legacy programs ~400 PI programs > 150 journal papers, including 7 **(Nature)** +2 **(Nature Astronomy)** 2 **(Science)** 2 **(SCPMA)** cover articles 1 **(Science Bulletin)** cover article Main Man 部 Innoviand

1784 M. B.

https://www.cyscc.org

ARECIBO - 永暾FAST bridging the centuries

