

James Clerk Maxwell Telescope East Asian Observatory

Magnetic field properties in molecular clouds and star formation

Junhao Liu EAO Fellow@East Asian Observatory PhD@Nanjing University in 2021

Life cycle of stars and interstellar matter

2

Molecular clouds and star formation (SF)

Inward: gravity (G)

Outward: turbulence, magnetic field (B), thermal pressure, rotation, feedback...

3

B in molecular clouds and star formation

B affect SF: generate dense structures, guide mass flow, reduce fragmentation, launch outflows, reduce SF rate/efficiency...

OR

- **B affected by SF**: distorted by gravity, disturbed by turbulence and (proto)stellar feedback...
- Two key questions: **B vs. Gravity** (normalized mass-to-flux ratio λ)? **B vs. Turbulence** (\mathcal{M}_A)?

Magnetic field-dominated star formation

Turbulence-dominated star formation

Mac Low & Klessen, 2004

Nakamura & Li 2008

How to trace B?

- Tracing B_{pos}: linearly polarized dust thermal emission or extinction of starlight (grain alignment), line linear (and circular) polaization (G-K effect), line velocity gradient (VGT)
- Tracing B_{los}: line circular polarization (Zeeman), ISM polarization (Faraday rotation measure).

Planck: 5' at 345 GHz

SOFIA: 5.1''-18.7'' at 53-214 μm

Dust polarization due to grain alignment: radiative torque (Except for disk polarization.) Simplified Model of Alignment Nutation of $\vec{\omega}$ around \vec{J} $\tau_n < 10^{-5}$ s Lazarian 2007 Alignment of $\vec{\omega}$ and \vec{J} /internal alignment/ Precession of \vec{J} around \vec{E} $\tau_L \sim 10^5$ s Gradual alignment of \vec{J} $\tau_{al} \sim 10^{11}$ s

Active polarimeter: APEX, JCMT(POL2), SMA, ALMA

Finished: Planck, BLASTPol

Decommissioned: CSO, SOFIA, BIMA, CARMA...

Commissioning: IRAM-30m(NIKA2), LMT(ToITEC)...

APEX: 20" at 345 GHz JCMT: 14" at 850µm SMA: arcsec to sub-arcsec

ALMA: arcsec to mas

How to study B?

- Statistical tool to link observations and simulations
 - Histogram of relative orientations analysis (HRO, Soler + 2013): observations of \vec{B}_{pos} and N
- Quantitative methods to determine \vec{B}_{pos} strength.
 - Davis-Chandrasekhar-Fermi method (DCF, Davis 1951, Chandrasekhar & Fermi 1953): needs observations of \vec{B}_{pos} , n, and v
 - Polarization-intensity gradient method (KTH, Koch, Tang, and Ho, 2012): needs observations of \vec{B}_{pos} , n, and N

(Three methods reviewed in Liu+ 2022b)

Histogram of relative orientation (HRO) analysis

- HRO: characterize the relative orientation between B and N
- HRO shape parameter ξ for an area
 - ξ > 0: tend to be parallel
 - ξ < 0: tend to be perpendicular

 $\xi = \frac{A_0 - A_{90}}{A_0 + A_{90}} \qquad \begin{array}{l} \mathsf{A}_0: \ |\phi_{\mathrm{B-N}}| < 22.5^{\circ} \\ \mathsf{A}_{90}: 67.5^{\circ} < |\phi_{\mathrm{B-N}}| < 90^{\circ} \end{array}$

 Link properties of observations and simulations

Planck Collaboration XXXV 2016 Taurus

Color: column density (N) structure Lines: B orientation $\phi_{B-N} = \arctan(|\nabla N \times \boldsymbol{E}|, \nabla N \cdot \boldsymbol{E})$ Angular difference between B and N contours (or E and N gradients)

HRO: observations

Clouds: ξ decreases with increasing N.

Agree with trans-/sub-Alfvenic simulations.

- $\mathcal{M}_{\mathbb{A}} < 1$: B>turbulence, sub-Alfvenic
- $\mathcal{M}_{A} > 1$: B<turbulence, super-Alfvenic

10 – 1 pc scales

HRO: observations

Filaments/clumps: ξ decreases with increasing N

Transition back to random alignment at intermediate N, possibly due to accreting gas flows

1 - 0.1 pc scales

HRO: observations

Dense cores: Zx (similar to ξ) increases with increasing N. Possibly due to core/disk rotation

0.1 – 0.01 pc scales

HRO: simulations

Liu+ 2022b			$\mu = \lambda$						
Size (pc)	Gravity	μ_0	\mathcal{M}_{A0}	μ	\mathcal{M}_A	$\xi > 0^d$	$\xi < 0^d$	Reference ^e	$A_1 = \frac{\partial_i \left(\partial_j v_j \right)}{1 + 2 i + 2 i} r_i,$
4	Yes	4.52-14.3	3.16-10		$\lesssim 1$	$A_{23} < 0$	$A_{23} > 0, \mathcal{M}_A > 1, \nabla \boldsymbol{v} < 0$	1,2,3	$(R_{\rm k}R_{\rm k})^{1/2}$
1	Yes		2.2-8.8		0.78-0.84	$\mathcal{M}_A < 1$	$\mathcal{M}_A > 1$	4	
32^a	Yes		0.6-0.8	0.54-0.72		$A_1 + A_{23} < 0$	$A_1 + A_{23} > 0, \mathcal{M}_A > 1$	5	$A_{22} = \frac{1}{2} \left(\partial_i v_i + \partial_i v_i \right) \left[r_i r_i - v_i \right]$
10	No		0.5				$A_1 + A_{23} > 0$	6	$2^{(010)} + 0^{(01)} + 0^{(01)}$
10^b	Yes					$\mu < 1$	$\mu > 1$	7	
10	No		0.7					8	
10	Yes		0.6					8	
100^{c}	Yes		0.6				$\mathcal{M}_A > 1$	9	

^e References: (1) Soler et al. (2013); (2) Planck Collaboration et al. (2016b); (3) Soler et al. (2017); (4) Chen et al. (2016); (5) Seifried et al. (2020); (6) Körtgen and Soler (2020); (7) Girichidis (2021); (8) Barreto-Mota et al. (2021); (9) Ibáñez-Mejía et al. (2022).

\vec{B}_{pos} // N at low-N: (1). Initially super-Alfvenic turbulence stretch density? (2). Intrinsic properties of sub-Alfvenic MHD turbulence?

• $\overline{B}_{pos} \perp N$ at higher-N: (1). Supersonic gas compression of local sub-Alfvenic turbulence? (2). Magnetized gravitational collapse? (3). Sub-Alfvenic large-scale B?

■ \vec{B}_{pos} // N change to $\vec{B}_{pos} \perp$ N: only found in **trans-/sub-Alfvenic environment**. Direct reason for transition may be related to local $\mathcal{M}_A > 1$, $A_1 + A_{23} > 0$, $\mu > 1$, and/or $\nabla v < 0$

Needs investigation: transition back to random alignment at intermediate-N and high-N.

How to study B?

- Statistical tool to link observations and simulations
 - Histogram of relative orientations analysis (HRO, Soler + 2013): observations of \vec{B}_{pos} and N
- Quantitative methods to determine \vec{B}_{pos} strength.
 - **Davis-Chandrasekhar-Fermi method** (DCF, Davis 1951, Chandrasekhar & Fermi 1953): needs observations of \vec{B}_{pos} , n, and v
 - Polarization-intensity gradient method (KTH, Koch, Tang, and Ho, 2012): needs observations of \vec{B}_{pos} , n, and N

(Three methods reviewed in Liu+ 2022b)

Davis-Chandrasekhar-Fermi (DCF) method

Uncertainties in basic assumptions and statistics of \vec{B}_{pos} -> Correction factor Q_c

- Basic assumptions (Liu + 2022b review)
 - Energy Equipartition
 - Isotropic turbulence.
 - Prominent underlying field
 - B^t/B^u and B^t/B^{tot} traced by statistics of observed \overline{B}_{pos}

- Factors affecting the statistics of \vec{B}_{pos} (Liu + 2022b)
 - Ordered field
 - Turbulent correlation
 - Line-of-sight signal integration
 - Beam smoothing and interferometer filtering
 - Projection effects

B vs. gravity (G): DCF compilation

- Liu+ 2022a,b: a complete DCF compilation. Correction factors for DCF variants from Liu+ 2021
- Normalized mass-to-flux ratio λ
- λ gradually increases with column density (N).
 - Loss of magnetic flux at high N
 - Ambipolar diffusion
 - Magnetic reconnection
 - Mass accumulation along B lines.
- High-mass SF region more gravity dominant than low-mass region

B vs. turbulence: DCF compilation

How to study B?

- Statistical tool to link observations and simulations
 - Histogram of relative orientations analysis (HRO, Soler + 2013): observations of \vec{B}_{pos} and N
- Quantitative methods to determine \vec{B}_{pos} strength.
 - Davis-Chandrasekhar-Fermi method (DCF, Davis 1951, Chandrasekhar & Fermi 1953): needs observations of \vec{B}_{pos} , n, and v
 - Polarization-intensity gradient method (KTH, Koch, Tang, and Ho, 2012): needs observations of \vec{B}_{pos} , n, and N

(Three methods reviewed in Liu+ 2022b)

Koch-Tang-Ho (KTH) method

B field

- ψ : angle between intensity gradient (IG) and Local gravity (LG)
- α : angle between intensity structure and B
- Estimate B with ideal MHD equation

$$B = \sqrt{\frac{\sin\psi}{\sin\alpha}} (\nabla P + \rho \nabla \phi_G) 4\pi R_{B_2}$$

B significance parameter Σ_B

$$\Sigma_B = \frac{\sin\psi}{\sin\alpha} = \frac{F_B}{|F_G + F_P|}$$

• Normalized mass-to-flux ratio $\lambda_{\rm KTH}$

 $\lambda_{\rm KTH} = \langle \Sigma_B^{-1/2} \rangle \pi^{-1/2}$

- Uncertainty not investigated with simulations yet.
- Observational KTH studies agree with HRO and DCF studies.

Combination of HRO and KTH methods

A unified relative orientation analysis between B, column density gradient (NG), local gravity (LG), and velocity gradient (VG).

Color: dust continuum. Line: B orientation

Liu+ 2023a: multi-scale (30 pc – 0.003 pc) B survey in massive star formation region NGC 6334

 $AM = \langle \cos(2\phi_{o1}^{o2}) \rangle$

Alignment measure (AM). AM>1: more parallel alignment. AM<1: more perpendicular alignment.

• AM-N relation. λ_{KTH} -N relation

- B ⊥ velocity gradient (VG): sub-Alfvenic turbulence?
- Theoretical/numerical predictions: B ⊥ VG at low-N, reflecting MHD turbulence; B//VG at high-N, both dragged by gravity.

Summary

Thanks!

22

DCF method

- Energy equipartition under debate
- B>G at low-N; B<G at high-N. N_{H2,crit}~3x10²¹ cm⁻². Ambipolar diffusion, magnetic reconnection, or mass accumulation along B lines.
- Cloud substructures are averagely trans-to-super-Alfvenic
- High-mass regions are more gravity dominant

HRO analysis

- \vec{B}_{pos} // N at low-N; $\vec{B}_{pos} \perp$ N at high-N. N_{H,tran}~10²¹⁻²² cm⁻², agrees with N_{H2,crit} from DCF. Transition back to random alignment at higher N.
- Reasons for alignment & transition to be investigated.
- Clouds are trans-to-sub-Alfvenic.
- KTH method
 - Uncertainty to be investigated by simulations.
 - Observational results agree with the DCF and HRO studies.

General trend of B	B VS gravity	B VS turbulence		
Low-N, large-scale, ~clouds	Sub-critical (B>G)	trans-/sub-Alfvenic (B≳turb)		
Intermediate N and scale, ~clumps/cores	Super-critical (B <g)< td=""><td>averagely trans-/super- Alfvenic (B≲turb)?</td></g)<>	averagely trans-/super- Alfvenic (B≲turb)?		
High-N, small-scale, ~near protostars	B impacted by star formation activities (rotation, outflow, accretion)			

My publications at EAO

- Liu+ 2022a: Compilation of B estimations from DCF in the literature
- Liu+ 2022b: Review of DCF, HRO, and KTH methods
- Liu+ 2023a: Multi-scale relative orientation analysis in NGC 6334
- Liu+ 2023b: turbulence cascade in NGC 6334 (not introduced)