Proposal Preparation and Submission

Harriet Parsons, Support Scientist, JAC/EAO
To implement the topics covered in this workshop you will need:

- A feasible science idea
- A computer
- Access to the internet for the following pages:

You may want to bookmark these links:

- www.eaobservatory.org/jcmt/instrumentation/heterodyne/itc/
- www.eaobservatory.org/jcmt/proposals/northstar/
Example 1: SCUBA-2

I have an interesting fragmented star forming complex I wish to observe. I wish to obtain a depth of 5mJy at 850 microns. The region is located at an RA and Dec of: 19h and +09°.

The complex I am interested in is large and spreads out nearly a degree in extent, requiring a Pong 3600 to cover the entire region.

• www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/itc/
Example 1: SCUBA-2

I have an interesting fragmented star forming complex I wish to observe. I wish to obtain a depth of 5mJy at 850 microns. The region is located at an RA and Dec of: 19h and +09°.

The complex I am interested in is large and spreads out nearly a degree in extent, requiring a Pong 3600 to cover the entire region.

[Table of calculations]

- [www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/itc/]
Example 1: SCUBA-2

I have an interesting fragmented star forming complex I wish to observe. I wish to obtain a depth of 5mJy at 850 microns. The region is located at an RA and Dec of: 19h and +09°.

The complex I am interested in is large and spreads out nearly a degree in extent, requiring a Pong 3600 to cover the entire region.

SCUBA-2 Integration Time Calculator

v2.1 (2013-08-28 / module 0.01): Option to specify obs. time added. Based on early 2012 calibration info (~10-12% shorter times than previous version)

Results:

No 450 μm rms target was specified: the rms was calculated using the computed 850 μm integration time.

<table>
<thead>
<tr>
<th></th>
<th>450</th>
<th>850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map type</td>
<td>Pong3600</td>
<td>Pong3600</td>
</tr>
<tr>
<td>Description</td>
<td>Pong3600: 1 degree map</td>
<td></td>
</tr>
<tr>
<td>Source Declination: [Deg]</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>Average Airmass</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>225 GHz Opacity</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>SCUBA2 Opacity</td>
<td>2.289</td>
<td>0.440</td>
</tr>
<tr>
<td>Transmission</td>
<td>0.079</td>
<td>0.613</td>
</tr>
<tr>
<td>Resampling factors</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>On-source Integration time [sec]:</td>
<td>53047</td>
<td>53047</td>
</tr>
<tr>
<td>...hours, min, sec:</td>
<td>14 hr 44 min 7 s</td>
<td>14 hr 44 min 7 s</td>
</tr>
</tbody>
</table>

Broken into 40-min observations including per-observation overheads this results in:

RMS [mJy/beam]: 172.17 5.00

Required Observing time [sec]: 55117 55117

...hours, min, sec: 15 hr 18 min 37 s 15 hr 18 min 37 s

ITCstring: Version=v2.1; ModuleVersion=v0.01; TYPE=Pong3600; DEC=19.0; TAU225=0.100; MODE=R; F450=4.0; F850=4.0; INTT450=53047; INTT850=53047; RMS450=5.00; OBS450=55117; OBS850=55117;

Example 1: SCUBA-2

I have an interesting fragmented star forming complex I wish to observe. I wish to obtain a depth of 5mJy at 850 microns. The region is located at an RA and Dec of: 19h and +09°.

The complex I am interested in is large and spreads out nearly a degree in extent, requiring a Pong 3600 to cover the entire region.

In Band 2 requires: 10 hours

In Band 3 requires: 15.5 hours

In Band 4 requires: 31 hours

Remember to copy the ITC string into your proposal!

www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/itc/
Example 2: SCUBA-2

I have a collection of 50 Sub-Millimetre Galaxies (SMG’s) at a redshift of $z=4$. I wish to observe them at both 450 and 850 microns. I need to achieve a depth of between 3.5 and 4.5 mJy/beam at 850 microns.

These objects are faint and compact. I expect to use the beam match filter during the reduction stage. The SMG’s either have Declinations around: -32° (in the SGP, 38 in total) or Declinations around +30° (in the NGP, 12 in total).

Example 2: SCUBA-2

I have a collection of 50 Sub-Millimetre Galaxies (SMG’s) at a redshift of z=4. I wish to observe them at both 450 and 850 microns. I need to achieve a depth of between 3.5 and 4.5 mJy/beam at 850 microns.

These objects are faint and compact. I expect to use the beam match filter during the reduction stage. The SMG’s either have Declinations around: -32° (in the SGP, 38 in total) or Declinations around +30° (in the NGP, 12 in total).

Example 2: SCUBA-2

I have a collection of 50 Sub-Millimetre Galaxies (SMG’s) at a redshift of z=4. I wish to observe them at both 450 and 850 microns. I need to achieve a depth of between 3.5 and 4.5 mJy/beam at 850 microns.

These objects are faint and compact. I expect to use the beam match filter during the reduction stage. The SMG’s either have Declinations around: -32° (in the SGP, 38 in total) or Declinations around +30° (in the NGP, 12 in total).

SCUBA-2 Integration Time Calculator

v2.1 (2013-08-28 / module 0.01): Option to specify obs. time added. Based on early 2012 calibration info (~10-12% shorter times than previous version)

Results:

No 450 μm rms target was specified: the rms was calculated using the computed 850 μm integration time.

<table>
<thead>
<tr>
<th>Map type</th>
<th>Description</th>
<th>450</th>
<th>850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Declination: [Deg]:</td>
<td>Daisy: ~3 arcmin map</td>
<td>Daisy: -32.0</td>
<td>0.279</td>
</tr>
<tr>
<td>Average Airmass:</td>
<td></td>
<td>1.798</td>
<td></td>
</tr>
<tr>
<td>225 GHz Opacity:</td>
<td></td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td>SCUBA2 Opacity:</td>
<td></td>
<td>1.379</td>
<td>0.079</td>
</tr>
<tr>
<td>Transmission:</td>
<td></td>
<td>0.084</td>
<td>0.606</td>
</tr>
<tr>
<td>Resampling factors:</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>On-source Integration time [sec]:</td>
<td></td>
<td>1089</td>
<td>1089</td>
</tr>
<tr>
<td>...hours, min, sec:</td>
<td></td>
<td>0 hr 18 min 9 s</td>
<td>0 hr 18 min 9 s</td>
</tr>
</tbody>
</table>

Broken into 30-min observations including per-observation overheads this results in:

RMS [mJy/beam]:	122.71	4.00
Required Observing time [sec]:	1179	1179
...hours, min, sec:	0 hr 19 min 39 s	0 hr 19 min 39 s

• www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/itc/
Example 2: SCUBA-2

I have a collection of 50 Sub-Millimetre Galaxies (SMG’s) at a redshift of z=4. I wish to observe them at both 450 and 850 microns. I need to achieve a depth of between 3.5 and 4.5 mJy/beam at 850 microns.

These objects are faint and compact. I expect to use the beam match filter during the reduction stage. The SMG’s either have Declinations around: -32° (in the SGP, 38 in total) or Declinations around +30° (in the NGP, 12 in total).

• www.eaobservatory.org/jcmt/
Example 2: SCUBA-2

I have a collection of 50 Sub-Millimetre Galaxies (SMG’s) at a redshift of \(z=4 \). I wish to observe them at both 450 and 850 microns. I need to achieve a depth of between 3.5 and 4.5 mJy/beam at 850 microns.

These objects are faint and compact. I expect to use the beam match filter during the reduction stage. The SMG’s either have Declinations around: -32° (in the SGP, 38 in total) or Declinations around +30° (in the NGP, 12 in total).

SCUBA-2 Integration Time Calculator

v2.1 (2013-08-28 / module 0.01): Option to specify obs. time added. Based on early 2012 calibration info (~10-12% shorter times than previous version)

Results:

No 450 \(\mu \text{m} \) rms target was specified: the rms was calculated using the computed 850 \(\mu \text{m} \) integration time.

<table>
<thead>
<tr>
<th></th>
<th>450</th>
<th>850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map type:</td>
<td>Daisy</td>
<td>Daisy: (~3 \text{ arc min map})</td>
</tr>
<tr>
<td>Description:</td>
<td>Daisy: (~3 \text{ arc min map})</td>
<td>30.0</td>
</tr>
<tr>
<td>Source Declination: [Deg]:</td>
<td>1.129</td>
<td>0.279</td>
</tr>
<tr>
<td>Average Airmass:</td>
<td>0.065</td>
<td>0.730</td>
</tr>
<tr>
<td>225 GHz Opacity:</td>
<td>1.379</td>
<td>0.279</td>
</tr>
<tr>
<td>SCUBA2 Opacity:</td>
<td>0.211</td>
<td>4.0</td>
</tr>
<tr>
<td>Transmission:</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Resampling factors:</td>
<td>695</td>
<td>695</td>
</tr>
<tr>
<td>On-source Integration time [sec]:</td>
<td>0 hr 11 min 35 s</td>
<td>0 hr 11 min 35 s</td>
</tr>
<tr>
<td>...hours, min, sec:</td>
<td>695</td>
<td>695</td>
</tr>
</tbody>
</table>

Broken into 30-min observations including per-observation overheads this results in:

<table>
<thead>
<tr>
<th></th>
<th>59.73</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS [mJy/beam]:</td>
<td>785</td>
<td>785</td>
</tr>
<tr>
<td>Required Observing time [sec]:</td>
<td>0 hr 13 min 5 s</td>
<td>0 hr 13 min 5 s</td>
</tr>
<tr>
<td>...hours, min, sec:</td>
<td>785</td>
<td>785</td>
</tr>
</tbody>
</table>

ITCstring: Version=v2.1;ModuleVersion=v0.01;TYPE=Daisy;DEC=30.0;TAU225=0.065;MODE=M;F450=4.0;F850=4.0;INTT450=695;INTT850=695;RMS850=4.00;OBS450=785;OBS850=785;
Example 2: SCUBA-2

I have a collection of 50 Sub-Millimetre Galaxies (SMG’s) at a redshift of z=4. I wish to observe them at both 450 and 850 microns. I need to achieve a depth of between 3.5 and 4.5 mJy/beam at 850 microns.

These objects are faint and compact. I expect to use the beam match filter during the reduction stage. The SMG’s either have Declinations around: -32° (in the SGP, 38 in total) or Declinations around +30° (in the NGP, 12 in total).

<table>
<thead>
<tr>
<th>Band 2 time.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total time required:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(38 x 20mins) + (12 x 13mins)</td>
</tr>
<tr>
<td>(12hours 40 mins) + (2 hours 36 mins)</td>
</tr>
</tbody>
</table>

15 hours 16 mins Band 2 time.

Example 3: HARP

This project aims to map a molecular cloud at a declination of -34° in CO (3-2) using HARP. Our particular intent is to search for and quantify any molecular outflows that are present within the region.

The area we wish to observe is 1900'' x 1700''. From existing data we expect the lines to be around 10K, with widths of ~4km/s. We therefore request a sensitivity of 0.6K in 1km/s bins.

• www.eaobservatory.org/jcmt/instrumentation/heterodyne/itc/
Example 3: HARP

This project aims to map a molecular cloud at a declination of -34° in CO (3-2) using HARP. Our particular intent is to search for and quantify any molecular outflows that are present within the region.

The area we wish to observe is 1900” x 1700”. From existing data we expect the lines to be around 10K, with widths of ~4km/s. We therefore request a sensitivity of 0.6K in 1km/s bins.

• www.eaobservatory.org/jcmt/instrumentation/heterodyne/itc/
Example 3: HARP

This project aims to map a molecular cloud at a declination of -34° in CO (3-2) using HARP. Our particular intent is to search for and quantify any molecular outflows that are present within the region.

The area we wish to observe is 1900” x 1700”. From existing data we expect the lines to be around 10K, with widths of ~4km/s. We therefore request a sensitivity of 0.6K in 1km/s bins.

Integration time is:
1h 28m if $\tau = 0.2$ (Band 3)
3h 16 m if $\tau = 0.15$ (band 4)
Example 3: HARP

This project aims to map a molecular cloud at a declination of -34° in CO (3-2) using HARP. Our particular intent is to search for and quantify any molecular outflows that are present within the region.

The area we wish to observe is 1900” x 1700”. From existing data we expect the lines to be around 10K, with widths of ~4km/s. We therefore request a sensitivity of 0.6K in 1km/s bins.

<table>
<thead>
<tr>
<th>HITEC Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declination</td>
</tr>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Transition</td>
</tr>
<tr>
<td>rms</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Weather</td>
</tr>
<tr>
<td>Observation type</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Request 1.5 hours Band 3 time.

For the proposal:

- www.eaobservatory.org/jcmt/instrumentation/heterodyne/itc/
Example 4: HARP

I wish to investigate the HCN level in a comet. It is difficult to calculate the exact expected sensitivity but it is around the ~0.5K limit. I will need a rms of 0.05K with a resolution of 0.25km/s.

It will be difficult to predict which weather band the comet will be observed in (it will need to be classically scheduled). As a result of the weather uncertainty I will base my proposal on poor weather – Band 4.
Example 4: HARP

I wish to investigate the HCN level in a comet. It is difficult to calculate the exact expected sensitivity but it is around the ~0.5K limit. I will need a rms of 0.05K with a resolution of 0.25km/s.

It will be difficult to predict which weather band the comet will be observed in (it will need to be classically scheduled). As a result of the weather uncertainty I will base my proposal on poor weather – Band 4.
Example 4: HARP

I wish to investigate the HCN level in a comet. It is difficult to calculate the exact expected sensitivity but it is around the ~0.5K limit. I will need a rms of 0.05K with a resolution of 0.25km/s.

It will be difficult to predict which weather band the comet will be observed in (it will need to be classically scheduled). As a result of the weather uncertainty I will base my proposal on poor weather – Band 4.

For a target sensitivity of $0.0500 \text{ K Ta}^* (50.0 \text{ mK})$ the on-source only integration time will be

1466.60 seconds per point resulting in a total duration of 1:01 hrs per observation, based on $T_{rx} = 90.0$ and $T_{sys} = 575.5$.

Required integration time is:

1h if $\tau = 0.14$

(the 'good' part of weather band 4)
Example 4: HARP

I wish to investigate the HCN level in a comet. It is difficult to calculate the exact expected sensitivity but it is around the ~0.5K limit. I will need a rms of 0.05K with a resolution of 0.25km/s.

It will be difficult to predict which weather band the comet will be observed in (it will need to be classically scheduled). As a result of the weather uncertainty I will base my proposal on poor weather – Band 4.

For the proposal:

<table>
<thead>
<tr>
<th>HITEC Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declination</td>
</tr>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Transition</td>
</tr>
<tr>
<td>rms</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Weather</td>
</tr>
<tr>
<td>Observation type</td>
</tr>
</tbody>
</table>

Request 1 hour Band time

• www.eaobservatory.org/jcmt/instrumentation/heterodyne/itc/
You have your science idea. You know it can be done. Now you must ask for time.

http://www.eaobservatory.org/jcmt/proposals/northstar/
First you will need a NorthStar account (unless you have one already)
Registration (Step 1/3)

Useraccount:
Username:

A password will automatically be generated after successful registration. This password may be changed once you are logged in.

Personal information:
title:
first name:
last name:
email:
phone(first):
phone(second):
fax:

Next > Cancel

Registration (Step 2/3)

Choose:
- Add institution from list
- Add new institution

Choose from list:
Institution: [Choose institution] - EAO

< Back Next > Cancel
Personal information:

username: hparsons
title: Dr
firstname: Harriet
lastname: Parsons
e-mail: h.parsons@jach.hawaii.edu
phone(first): 808
phone(second):
fax:

Institution:

institute: EAO
department:
address: 660 N Aohoku Place
city: Hilo
state: Hawaii
country: USA
zipcode: 96720
Website: http://www.eaobservatory.org/

Position: Support Astronomer
Remarks:

If all data is correct, press on the "Register" button to finish registration.
A generated password and public key will be sent to h.parsons@jach.hawaii.edu.
Welcome to NorthStar at JCMT

Username:
Password:
Log in

The Northstar application has been developed at ASTRON as part of the EC-funded RadioNet project.

Register as new user Password forgotten? Send Questions/Problems Help
This version of NorthStar is offered exclusively for applicants eligible to submit proposals to the Dutch, UK, Canadian, and International queues for the JCMT.

For UK, Canadian, International proposals on JCMT more information can be found on the [JCMT Website](#).

NEWS:
08 Aug 2008:
- Northstar hosted for the first time at JCMT

Telescopes: ☑ JCMT
Show reviewed proposals: ☐ Yes ☑ No
- Currently there are no proposals in preparation -

Create new proposal
Personal Account Information (opens in new window)

This version of NorthStar is offered exclusively for applicants eligible to submit proposals to the Dutch, UK, Canadian, and International queues for the JCMT.

For UK, Canadian, International proposals on JCMT more information can be found on the [JCMT Website](#).

NEWS:

08 Aug 2008:
- Northstar hosted for the first time at JCMT

Telescopes: ✔ JCMT

Show reviewed proposals: ○ Yes ◯ No
- Currently there are no proposals in preparation -

Create new proposal
This version of NorthStar is offered exclusively for applicants eligible to submit proposals to the Dutch, UK, Canadian, and International queues for the JCMT.

For UK, Canadian, International proposals on JCMT more information can be found on the [JCMT Website](http://www.jcmt.org).

NEWS:

08 Aug 2008:
- Northstar hosted for the first time at JCMT

Telescopes: ✔ JCMT

Show reviewed proposals: ☐ Yes ☐ No

- Currently there are no proposals in preparation -

[Create new proposal](#)

Click to start creating a new proposal.
Please not this is a ‘test’ semester. If you have a real proposal you may upload it here for a trial but please save your own copy offline.
<table>
<thead>
<tr>
<th>Active Participant</th>
<th>Contact Author</th>
<th>PI</th>
<th>Name</th>
<th>Affiliation</th>
<th>Country</th>
<th>Email</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td></td>
<td>Dr Harriet Parsons</td>
<td>EAO</td>
<td>USA</td>
<td>h.parsons@jach.hawaii.edu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Add applicant**
- **Save and Continue**
- **Save and Preview**
- **Save and Exit**
- **Save and Submit**
- **Quit without saving**
Add/edit Applicant

Note: Active Participants can both View and Edit this proposal.
The invitation will be sent to the e-mail address entered here.

NB: The invitation will only be sent the next time one of the "save" buttons is pressed!

Invite as Active Participant: ✔

Name:
Affiliation:
Email:
Country:

Ok Cancel
You must specify targets/observation setup here.

Specify a new target/observation Upload target list

Requested time per weather grade (hours): *

New in Semester 10B:
Calibrations will no longer be charged to science projects.
Your requested times should not include them.
For exceptions and further info, see Call for Proposals:
http://www.jach.hawaii.edu/JCMT/observing/calls/

Total time specified for targets in list: 0 hours

1) Very dry: [] 2) Dry: [] 3) Medium: [] 4) Wet: [] 5) Very Wet: []

Indicate time per receiver (hours): *

A-Band: [] B-Band RxW: [] B-Band HARP: [] D-Band: [] SCUBA-2: [] OTHER: []

Ancillary instrumentation: [] SCUBA-2 polarimeter [] SCUBA-2 FTS

Flexible scheduling?: [] Yes [] No

Overall scheduling requirements:

Overall scheduling preferences:

Save and Continue Save and Preview Save and Exit Save and Submit Quit without save
Information about all students involved:

- Are there linked proposals submitted to this TAC?:
 - Yes
 - No

- Are there linked proposals submitted to other TACs?:
 - Yes
 - No

- Are there relevant previous allocations?:
 - Yes
 - No

Additional Remarks:

[Text box for additional remarks]
Parsons

No code

Abstract

EMPTY

Requested time per weather grade (hours)

<table>
<thead>
<tr>
<th></th>
<th>Very dry</th>
<th>Dry</th>
<th>Medium</th>
<th>Wet</th>
<th>Very wet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
</tr>
</tbody>
</table>

Requested time per receiver (hours)

<table>
<thead>
<tr>
<th></th>
<th>A-Band</th>
<th>B-Band RxW</th>
<th>B-Band HARP</th>
<th>D-Band</th>
<th>SCUBA-2</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
</tr>
</tbody>
</table>
Parsons

Applicants

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
<th>Country</th>
<th>Potential observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Harriet Parsons</td>
<td>EAO</td>
<td>h.parsons@jach.hawaii.edu</td>
<td>USA</td>
<td>PI</td>
</tr>
</tbody>
</table>

Contact Author

<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Institute</th>
<th>Department</th>
<th>Address</th>
<th>Zipcode</th>
<th>City</th>
<th>State</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Harriet Parsons</td>
<td>EAO</td>
<td></td>
<td>660 N Aohoku Place</td>
<td>96720</td>
<td>Hilo</td>
<td>Maui</td>
<td>USA</td>
</tr>
</tbody>
</table>

Summary of observations

No details given

Flexible scheduling: Yes

No overall scheduling requirements

No overall scheduling preferences

No PhD Students involved

Linked proposal submitted to this TAC: No

Linked proposal submitted to other TACs: No

Relevant previous Allocations: No

No additional remarks
<table>
<thead>
<tr>
<th>Parsons</th>
<th>EMPTY</th>
<th>No code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Scientific Justification File uploaded</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This version of NorthStar is offered exclusively for applicants eligible to submit proposals to the Dutch, UK, Canadian, and International queues for the JCMT.

For UK, Canadian, International proposals on JCMT more information can be found on the [JCMT Website](http://jcmt.org).

NEWS:

08 Aug 2008:
- Northstar hosted for the first time at JCMT

<table>
<thead>
<tr>
<th>Proj_ID</th>
<th>PI</th>
<th>Title</th>
<th>Community</th>
<th>Category</th>
<th>Status</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsons</td>
<td>International Community</td>
<td>regular</td>
<td>in preparation</td>
<td></td>
<td></td>
<td>Edit, Copy, Delete, Submit, View</td>
</tr>
</tbody>
</table>

[Create new proposal](#)
Make it easy on the TAC and give them as much information as possible – always include the ITC or HITEC numbers you specifically used!