JINGLE: JCMT dust and gas In Nearby Galaxies Legacy Exploration — Status update and science highlights

Lihwai Lin (ASIAA)
On Behalf of the JINGLE Team

Coordinators:

Ho Seong Hwang (KASI)
Lihwai Lin (ASIAA)
Amelie Saintonge (UCL; **PI**)
Mark Sargent (Sussex)
Tomoka Tóasaki (JEUN)
Christine Wilson (McMaster)
Ting Xiao (Zhejiang)

Contributions From:

Isabella Lamperti (UCL)
Yang Gao (SHAO)
Hsi-An Pan (ASIAA->MPIA)
Matthew Smith (Cardiff)

Image Credit: William Montgomerie
The gas fraction and star formation efficiency (SFR/M_{gas}) are the keys to understand the mode regulating the star formation in galaxies.

Conventionally, the cold molecular gas mass M_{gas} can be derived from:

- M_{co} via \(\alpha_{co} \) (e.g., Saintonge+11; Tacconi+13; Sargent+14)
- M_{dust} via dust-to-gas ratio (e.g., Israel 1997; Leroy+11; Magdis+11; Scoville+14)
Survey Objectives of JINGLE

JINGLE 780h legacy survey

SCUBA-2
250 h, weather bands 2-4
850μm observations of 193 galaxies

Dust:
2) Dust mass and dust scaling relations

RxA3m
530 h, weather bands 4-5
CO(2-1) observations of 97 galaxies

Gas:
1) Star formation, star formation history and the total gas reservoir

Dust + Gas:
3) The relation between molecular gas and dust
JINGLE: sample overview (2016 -)

~200 nearby galaxies
Redshift range: $0.01 < z < 0.05$

Multi-wavelength data:
- photometry: GALEX/SDSS/WISE/Herschel
 (H-ATLAS)
- optical IFU maps: MaNGA/SAMI
- HI maps: Apertif/ASKAP
Status of JINGLE 1 Observations (as of Nov. 6, 2019)

★ SCUBA-2: 100% complete \([193/193\) galaxies observed]\)

★ RxA:

✦ 74% complete \([72/97\) observed]\)

✦ 79% complete for MaNGA galaxies \([52/66]\); 26 non-MaNGA galaxies to observe as “priority 2”

★ After the retirement of RxA, we started using Namakanui (“Big-Eyes”) receiver

SCUBA-2 (193 galaxies)

RxA (72 galaxies)
Complete and Active Science Papers

★ 4 papers published, 1 submitted, 1 to be submitted, 1 in prep.

✦ JINGLE I: Survey overview and first results (Saintonge+2018) - MNRAS, 481, 3497
✦ JINGLE II: SCUBA-2 data reduction and flux catalogs (Smith+2019) - MNRAS, 486, 4166
✦ JINGLE III: Molecular gas properties and scaling relations (Xiao+.) - in preparation
✦ JINGLE V: Dust properties from hierarchical Bayesian SED fitting (Lamperti+2019) - MNRAS, 489, 4389
✦ Molecular gas scaling relations in the JINGLE pilot sample (Gao et al.) - ApJ submitted
✦ JINGLE IV: Dust and HI scaling relations (De Looze+) - to be submitted
Approved JINGLE follow-up programmes

➢ **ALMA/ACA (C grade, cycle 6, 2018):**
 Mapping CO emission in galaxies from the JINGLE survey - **PI: C. Wilson (McMaster)**

➢ **IRAM 30m/NIKA2 (20.9 hrs, 2018):**
 Characterizing the millimeter emission in nearby galaxies using NIKA-2 - **PI: I. Lamberti (UCL)**

➢ **JCMT/SCUBA2 (60 hrs, Nov. 2017):**
 Dust Properties of Starbursts and Green Valley Galaxies in the Local Universe - **PI: H. S. Hwang (KIAS)**

➢ **JCMT/RxA (100 hrs, Nov. 2017):**
 Extending the JINGLE RxA Samples to Include” Red Mist” Galaxies - **PI: R. Chown (McMaster)**

➢ **ALMA (cycle 5):**
 Snapshots of 6 Ultra-Red z>6 SCUBA2 sources from the JINGLE survey - **PI: J. Greenslade (Imperial)**

➢ **IRAM 30 m/NIKA2 (3 hrs, May 2017):**
 The Brightest SPIRE dropout to date? Confirming a F850=18.9 mJy source not detected in Herschel - **PI: J. Greenslade (Imperial)**

➢ **Arecibo (37.6 hrs, Dec. 2016):**
 Atomic Gas Content of JINGLE Galaxies - **PI: M. Smith (Cardiff)**
Science Highlights 1: JINGLE Overview + Galaxy SEDs

Saintonge+18:
> 30 aperture matched photometry (UV to FIR) and derived products of all 193 JINGLE galaxies

<table>
<thead>
<tr>
<th>Facility</th>
<th>Effective wavelength</th>
<th>Band name</th>
<th>Photometry present</th>
<th>Pixel width (arcsec)</th>
<th>Resolution FWHM (arcsec)</th>
<th>Calibration uncertainty (per cent)</th>
<th>Data archive</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALEX</td>
<td>153 nm</td>
<td>FUV</td>
<td>183</td>
<td>2.5</td>
<td>4.3</td>
<td>4.5</td>
<td>a</td>
</tr>
<tr>
<td>GALEX</td>
<td>227 nm</td>
<td>NUV</td>
<td>185</td>
<td>2.5</td>
<td>5.3</td>
<td>2.7</td>
<td>b</td>
</tr>
<tr>
<td>SDSS</td>
<td>353 nm</td>
<td>u</td>
<td>192</td>
<td>0.4</td>
<td>1.3</td>
<td>1.3</td>
<td>c</td>
</tr>
<tr>
<td>SDSS</td>
<td>475 nm</td>
<td>g</td>
<td>192</td>
<td>0.4</td>
<td>1.3</td>
<td>0.8</td>
<td>d</td>
</tr>
<tr>
<td>SDSS</td>
<td>622 nm</td>
<td>r</td>
<td>193</td>
<td>0.4</td>
<td>1.3</td>
<td>0.8</td>
<td>e</td>
</tr>
<tr>
<td>SDSS</td>
<td>763 nm</td>
<td>i</td>
<td>192</td>
<td>0.4</td>
<td>1.3</td>
<td>0.7</td>
<td>f</td>
</tr>
<tr>
<td>SDSS</td>
<td>905 nm</td>
<td>z</td>
<td>193</td>
<td>0.4</td>
<td>1.3</td>
<td>0.8</td>
<td>g</td>
</tr>
<tr>
<td>VISTA</td>
<td>877 nm</td>
<td>Z</td>
<td>45</td>
<td>0.4</td>
<td>0.8</td>
<td>2.7</td>
<td>h</td>
</tr>
<tr>
<td>VISTA</td>
<td>1.02 μm</td>
<td>Y</td>
<td>44</td>
<td>0.4</td>
<td>0.8</td>
<td>2.7</td>
<td>i</td>
</tr>
<tr>
<td>VISTA</td>
<td>1.25 μm</td>
<td>J</td>
<td>12</td>
<td>0.4</td>
<td>0.8</td>
<td>2.7</td>
<td>j</td>
</tr>
<tr>
<td>VISTA</td>
<td>1.65 μm</td>
<td>H</td>
<td>45</td>
<td>0.4</td>
<td>0.8</td>
<td>2.7</td>
<td>k</td>
</tr>
<tr>
<td>VISTA</td>
<td>2.15 μm</td>
<td>Ks</td>
<td>47</td>
<td>0.4</td>
<td>2.0</td>
<td>2.7</td>
<td>l</td>
</tr>
<tr>
<td>2MASS</td>
<td>1.24 μm</td>
<td>J</td>
<td>192</td>
<td>1</td>
<td>2.0</td>
<td>1.7</td>
<td>m</td>
</tr>
<tr>
<td>2MASS</td>
<td>1.66 μm</td>
<td>H</td>
<td>191</td>
<td>1</td>
<td>2.0</td>
<td>1.9</td>
<td>n</td>
</tr>
<tr>
<td>2MASS</td>
<td>2.16 μm</td>
<td>Ks</td>
<td>192</td>
<td>1</td>
<td>2.0</td>
<td>1.9</td>
<td>o</td>
</tr>
<tr>
<td>WISE</td>
<td>3.4 μm</td>
<td>(W1)</td>
<td>182</td>
<td>1.375</td>
<td>6.1</td>
<td>2.9</td>
<td>p</td>
</tr>
<tr>
<td>WISE</td>
<td>4.6 μm</td>
<td>(W2)</td>
<td>183</td>
<td>1.375</td>
<td>6.4</td>
<td>5.4</td>
<td>q</td>
</tr>
<tr>
<td>WISE</td>
<td>12 μm</td>
<td>(W3)</td>
<td>193</td>
<td>1.375</td>
<td>6.5</td>
<td>4.6</td>
<td>r</td>
</tr>
<tr>
<td>Spitzer</td>
<td>4.5 μm</td>
<td>(IRAC-2)</td>
<td>28</td>
<td>0.6</td>
<td>1.72</td>
<td>3</td>
<td>s</td>
</tr>
<tr>
<td>Spitzer</td>
<td>5.8 μm</td>
<td>(IRAC-3)</td>
<td>17</td>
<td>0.6</td>
<td>1.88</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>Spitzer</td>
<td>8.0 μm</td>
<td>(IRAC-4)</td>
<td>16</td>
<td>0.6</td>
<td>1.98</td>
<td>3</td>
<td>u</td>
</tr>
<tr>
<td>Spitzer</td>
<td>24 μm</td>
<td>(MIPS-1)</td>
<td>25</td>
<td>2.45</td>
<td>6</td>
<td>5</td>
<td>v</td>
</tr>
<tr>
<td>Spitzer</td>
<td>70 μm</td>
<td>(MIPS-2)</td>
<td>18</td>
<td>4</td>
<td>18</td>
<td>10</td>
<td>w</td>
</tr>
<tr>
<td>Spitzer</td>
<td>160 μm</td>
<td>(MIPS-3)</td>
<td>18</td>
<td>8</td>
<td>38</td>
<td>12</td>
<td>x</td>
</tr>
<tr>
<td>Herschel</td>
<td>100 μm (PACS-Green)</td>
<td>190</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>y</td>
</tr>
<tr>
<td>Herschel</td>
<td>160 μm (PACS-Red)</td>
<td>190</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>z</td>
</tr>
<tr>
<td>Herschel</td>
<td>250 μm (SPIRE-PSW)</td>
<td>193</td>
<td>6</td>
<td>18</td>
<td>55</td>
<td>55</td>
<td>a</td>
</tr>
<tr>
<td>Herschel</td>
<td>350 μm (SPIRE-PMW)</td>
<td>193</td>
<td>8</td>
<td>25</td>
<td>55</td>
<td>55</td>
<td>b</td>
</tr>
<tr>
<td>Herschel</td>
<td>500 μm (SPIRE-PLW)</td>
<td>193</td>
<td>12</td>
<td>36</td>
<td>55</td>
<td>55</td>
<td>c</td>
</tr>
</tbody>
</table>
Science Highlights 1: JINGLE Overview + Galaxy SEDs

Saintonge+18:
> 30 aperture matched photometry and derived products of JINGLE galaxies

<table>
<thead>
<tr>
<th>Table 2. Properties of the JINGLE galaxies (the full table is available electronically)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JINGLE ID</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>JINGLE0</td>
</tr>
<tr>
<td>JINGLE1</td>
</tr>
<tr>
<td>JINGLE2</td>
</tr>
<tr>
<td>JINGLE3</td>
</tr>
<tr>
<td>JINGLE4</td>
</tr>
<tr>
<td>JINGLE5</td>
</tr>
<tr>
<td>JINGLE6</td>
</tr>
<tr>
<td>JINGLE7</td>
</tr>
<tr>
<td>JINGLE8</td>
</tr>
<tr>
<td>JINGLE9</td>
</tr>
<tr>
<td>JINGLE10</td>
</tr>
<tr>
<td>JINGLE11</td>
</tr>
<tr>
<td>JINGLE12</td>
</tr>
<tr>
<td>JINGLE13</td>
</tr>
</tbody>
</table>
Science Highlights 2: IR & submm Data

Smith et al. 2019: 850 um data reduction

126 out of 193 galaxies (64%) are detected in 850um with S/N > 3
Science Highlights 2: IR & submm Data

Smith et al. 2019
Science Highlights 2: IR & submm Data

Smith et al. 2019
Science Highlights 3:
Dust Properties from more sophisticated SED fitting

THEMIS models
physically motivated dust models

MBB: modified black-body analytical functions

De Looze et al., in prep.

Lamperti et al., 2019.
Single Modified Black Body (SMBB)

\[F_\lambda (M_{\text{dust}}, T_{\text{dust}}, \beta) = \frac{M_{\text{dust}}}{D^2} \kappa_0 \left(\frac{\lambda_0}{\lambda} \right)^\beta B_\lambda (T_{\text{dust}}) \]

By adding SCUBA-2 850\text{um} data, we can fit better for dust temperature \((T_{\text{dust}})\) and dust emissivity index \((\beta)\).
Correlation between T_{dust} and β: Is it intrinsic correlation or degeneracy?

See also Désert et al. (2008), Paradis et al. (2010), Baracco et al. (2011), Smith et al. (2012)

Reference: Shetty et al. 2009a,b
Application to the JINGLE sample

Lamperti et al., 2019

The hierarchical method reduces the $T_{\text{dust}} - \beta$ anti-correlation in the JINGLE sample!
Dust Properties On the SFR-M* plane in JINGLE and HRS

Lamperti et al., 2019

dust emissivity index β

dust temperature T_{dust}
Dust scaling relations can be applied to derive dust properties for samples were fewer photometric data are available, for example at higher redshift.
The Effect of Galaxy Interactions on Molecular Gas Properties

Hsi-An Pan1,2, Lihwai Lin1,3, Hau-Ching Hsieh1,3, Ting Xiao1,3, Yang Gao1,3, Sara I. Ellison4, Jillian M. Scudder5, Jorge Barrera-Ballesteros2, Fangling Yuan1, Amelia Saintonge6, Christine D. Wilson7, Ho Seong Ihwang8, Ilse de Loore9,10, Yu Gao11, Luis C. Ho12,13, Elias Brinks14, Angus Mok15, Toby Brown16, Timothy A. Davis16, Thomas G. Williams17,18, Areej Chung19,20, Harriet Parsons20, Martin Bureau19, Mark T. Sargent20,21, Eun Jung Chung21, Simon Kim1,10,11, Tie Liu18,19,20, Michal J. Michalowski18, and Tomoka Tosi4

1 Institute of Astronomy and Astrophysics, Academia Sinica, A5/NTU Astronomy-Mathematics Building, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan
2 Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China
3 Shanghai Astronomical Observatory, 822 North Zhongshan Road, Shanghai 200030, People’s Republic of China
4 Department of Physics and Astronomy, University of Victoria, Victoria Road, Victoria, BC V8P 1A1, Canada
5 Department of Physics and Astronomy, Utrecht University, 3584 CT, Utrecht, The Netherlands
6 Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218, USA
7 University College London, Gower Street, London WC1E 6BT, UK
8 Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
9 Quantum Universe Center, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
10 Konkuk University, Gwangju, Xi-nam, Republic of Korea
11 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 3 Yantan Road, Nanjing 210036, People’s Republic of China
12 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People’s Republic of China
13 Department of Astronomy, School of Physics, Peking University, Beijing 100871, People’s Republic of China
14 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
15 Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606, USA
16 School of Physics and Astronomy, Cardiff University, The Parade, The Parade, Cardiff CF24 3AA, UK
17 Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
18 East Ham Observatory, 860 N. A. Shelf Place, Hill, IL 60070, USA
19 Sub-Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
20 Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
21 Korea Astronomy and Space Science Institute, 773 Daejeonbukro, Yuseongpo, Daejeon 34065, Republic of Korea
22 School of Space Research, Kyung Hee University, Yongin, Gyeonggi 17140, Republic of Korea
23 National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012, People’s Republic of China
24 Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, ul. Sienkiewicza 6, 60-279 Poznan, Poland
25 Faculty of Education, Yamagata University, Yamagata 990-8512, Japan

Received 2018 September 26; revised 2018 October 21; accepted 2018 October 25; published 2018 December 3

Abstract

Galaxy interactions are often accompanied by an enhanced star formation rate (SFR). Since molecular gas is essential for star formation, it is vital to establish whether and by how much galaxy interactions affect the molecular gas properties. We investigate the effect of interactions on global molecular gas properties by studying a sample of 58 galaxies in pairs and groups at z<0.4. Molecular gas properties are determined from observations with the JCMT, PMO, and CSO telescopes and supplemented with data from the xCOLD GASS and JINGLE surveys at 12CO(1–0) and 12CO(2–1). The SFR, gas mass (M_H2), and gas fraction (f_gas) are all enhanced in galaxies in pairs by ~2.5 times compared to the controls matched in redshift, mass, and effective radius, while the enhancement of star formation efficiency (SFE = SFR/M_H2) is less than a factor of 2. We also find that the enhancements in SFR, M_H2, and f_gas increase with decreasing pair separation and are larger in systems with smaller stellar mass ratio. Conversely, the SFE is only enhanced in close pairs (separation <20 kpc) and equal-mass systems; therefore, most galaxies in pairs lie in the same parameter space on the SFR–M_H2 plane as controls. This is the first time that the dependence of molecular gas properties on merger configurations is probed statistically with a relatively large sample and a carefully selected control sample for individual galaxies. We conclude that galaxy interactions do modify the molecular gas properties, although the strength of the effect is dependent on merger configuration.

Key words: galaxies: interactions – galaxies: ISM – ISM: molecules – galaxies: star formation
Science Highlights 4: Galaxy Interactions and Molecular Gas Properties

Pan, Lin et al. 2018

Table 1. Summary of the molecular gas data used in this work.

<table>
<thead>
<tr>
<th>project</th>
<th>JCMT PI programs</th>
<th>JINGLE</th>
<th>JINGLE pilot</th>
<th>xCOLD GASS</th>
<th>xCOLD GASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>telescope</td>
<td>JCMT 15 m</td>
<td>JCMT 15 m</td>
<td>JCMT 15 m/PMO 14 m/CSO 10.1 m</td>
<td>IRAM 30 m</td>
<td>IRAM 30 m</td>
</tr>
<tr>
<td>transition</td>
<td>12CO(2 1)</td>
<td>12CO(2 1)</td>
<td>12CO(2 1)/(1 0)/(2 1)</td>
<td>12CO(1 0)</td>
<td>12CO(1 0)</td>
</tr>
<tr>
<td>beamsize</td>
<td>22''</td>
<td>22''</td>
<td>34''/31''/30''</td>
<td>22''</td>
<td>22''</td>
</tr>
<tr>
<td>number</td>
<td>2/2/1</td>
<td>8</td>
<td>25</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>M_\star range</td>
<td>9.43 10.74</td>
<td>10.11 10.84</td>
<td>9.97 11.15</td>
<td>9.28-11.11</td>
<td>9.01 11.33</td>
</tr>
<tr>
<td>redshift range</td>
<td>0.021 - 0.054</td>
<td>0.023 - 0.039</td>
<td>0.020 - 0.039</td>
<td>0.010 - 0.048</td>
<td>0.010 - 0.040</td>
</tr>
</tbody>
</table>

Hubble Space Telescope
Science Highlights 4: Galaxy Interactions and Molecular Gas Properties

Pan, Lin et al. 2018

![Diagram showing scatter plots with Kendall-τ values for different parameters related to galaxy interactions and molecular gas properties.](Hubble Space Telescope)
What’s Next?

From JINGLE 1:
- Not many galaxies with high and low sSFRs, which will the keys to fully calibrate the scaling relation for subsequent application at high redshift.
- Variations in T_{dust} and β are seen across the SFR-M^* plane.
- CO(2-1) correlates well with L12um and L22um

Unanswered Questions:
- Do the scaling relations for main sequence galaxies hold for starburst or green valley galaxies?
- How do molecular gas fraction and SFE vary with galaxy properties? Are the star formation modes similar across different populations?

Expand the sample to galaxies above and below the main sequence!
JINGLE 2 (Willson, Lin, Xiao, Hwang, Sargent, Koyama)

- B-ranked: Received only RxA3m time (2017.8 - 2020.1)
 - Band 4: 285.0 hours
 - Band 5: 169.0 hours
 - Follow-up Proposal (PI: H.S.Hwang): 60 hours of SCUBA-2

- Targets
 - 21 starburst galaxies
 - 21 green-valley galaxies: 9 in MaNGA

- Requested Observations
 - 185 hours of RxA3m observations
 - 124 hours of SCUBA-2 observations
SUMMARY

- JINGLE represents the first and largest systematic survey of cold ISM in nearby star-forming main galaxies with both 850um and CO observations, enabling independent estimates of gas mass and improved constraints on the dust properties.

- JINGLE 850 data:
 - help constrain SED in combination with other NIR and submm data
 - reveal variations in T_{dust} and β across the main sequence
 - reveal strong correlation between 1) T_{dust} and SFR per unit dust mass; 2) β and HI gas fraction

- JINGLE 2 will expand the sample to starburst and green valley galaxies to complete the full picture in the role of dust and cold gas.