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Fragmentation and Relative Importance between
Gravity, Magnetic Field, and Turbulence in IRDC G34
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Filaments and Magnetic Fields

28°20'00"
28°00'00" FI, 5 r

27°40'00" |

g
I
=
c
o

Declinat

26°40'00"

= striations

26°20'00" - filament

4“20‘“00' 4"20"‘00.
Right Ascension (J2000) Right Ascension (J2000)

e Taurus molecular cloud; Herschel / SPIRE 250 um (~ 18” resolution; Palmeirim+2013)

e polarization: optical (Heyer+2008; Heiles+2000) and infrared (Chapman+2013)
e B-field | striations 1 filament



Filaments and Magnetic Fields: Proposed Scenario

® accretion of background material
through striations or sub-filaments
along B-field lines

® radial contraction within main filament

® |ongitudinal infall along main filament

¢ important ancillary line data: coherent
velocity structures

® formation steps: (1) large-scale MHD
flows (turbulent?) lead to filamentary
network with universal fillament width ~
0.1pc; (2) densest filaments fragment
into prestellar cores by gravitational
instability (critical line mass ~ 16
M_solar/pc, critical density ~ 2 x 1074
cm?”-3)

(e.g. Andre+2010; Menshchikov+2010; Molinari+2010;
Sugitani+2011; Kirk+2013; Arzoumanian+2013;
Andre+2014; )



IRDC G34.43

- distance: 3.7 kpc, elongated length ~ 8 pc

- mass: 1200 M_sol (mm1), 1300 M_sol (mm2)
300 M_sol (mm3)

- overall, very small viral parameter
(x ~ 0.2), system gravitationally bound, but
SF efficiency only ~ 7%.
additional support from B-field ?

- observed with the CSO/SHARP
(350um, resolution 10")

- polarization percentage 0.4 - 10%

- B-field clearly organized
perpendicular to longer axis around
mml/mm2; more aligned with longer
axis on mm3, small dispersion

- add line kinematics:
NzH+ (1-0) from IRAM-30m (6~28"),
clear large-scale gradient

Peretto+2017 Tang, Koch+2019 Rathborne+2006



B-field, velocity gradient, turbulence & gravity

which component is dominant? negligible? - benchmark analysis
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difference in orientation [deg]

integrated emission in N,'H+ | Kkms |

e MMI/MM2
e MM3

20 30 40 60 70 80 90

difference in orientation (B-field vs velocity gradient) [deg]

B vs v: small differences and spatially not random, but organized

(Tang, Koch+2019)




B-field, velocity gradient, turbulence & gravity

which component is dominant? negligible? - benchmark analysis
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force ratio __ Polarization - Intensity gradient technique
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SERFALRLRY | h:2012ab, 2013

= competition gravity vs B-field
= map of local field strength, local force ratio

B vs G: spatially not random, but organized
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(Houde, Hildebrand+ 2009, 2010
Koch+2010)
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Analysis — Gravity vs Turbulence vs B-field

2 pc clump area
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isolated single numbers have limited information

need for joint analyses



Analysis — Subtle Balance Gvs T vs B
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Analysis — Subtle Balance Gvs Tvs B

Consequence for Fragmentation MM3
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different relative importance between B-field, turbulence,
and gravity seems to control fragmentation towards next smaller scale;
also seen in simulation work by e.g., Seifried+2015



Analysis — Subtle Balance Gvs Tvs B

Consequence for Fragmentation MM3
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JCMT / POL-2 science:
ideally suited to probe “initial conditions” for fragmentation



CSO/SHARP 350 ym vs JCMT / POL-2 850 um
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Conclusions

® role of B-field is variable (both in scales and locations)

® JCMT / POL-2 “intermediate” resolution between several-arcmin scales
and (sub-)arcsec scales: “initial-condition” scale to map B-field morphologies

® generally: joint analyses is important
B-field needs to be compared to turbulence, gravity (and more? feedback etc)

® need for ancillary (matching) data, in particular line kinematics;
good and complete coverage is essential! smaller / larger areas give different
results!

® example: initial-conditions for fragmentation in IRDC G34;
balance between G, B, T derived for clump and core scales, trends across 2
different scales are different and can explain different fragmentation types

® need to develop analysis tools: & is a key observable, leading to local field
strength measurement and local force ratio 2



